Skip to main content
Log in

Engineering Thermostable Microbial Xylanases Toward its Industrial Applications

  • Review
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Xylanases are one of the important hydrolytic enzymes which hydrolyze the β-1, 4 xylosidic linkage of the backbone of the xylan polymeric chain which consists of xylose subunits. Xylanases are mainly found in plant cell walls and are produced by several kinds of microorganisms such as fungi, bacteria, yeast, and some protozoans. The fungi are considered as most potent xylanase producers than that of yeast and bacteria. There is a broad series of industrial applications for the thermostable xylanase as an industrial enzyme. Thermostable xylanases have been used in a number of industries such as paper and pulp industry, biofuel industry, food and feed industry, textile industry, etc. The present review explores xylanase–substrate interactions using gene-editing tools toward the comprehension in improvement in industrial stability of xylanases. The various protein-engineering and metabolic-engineering methods have also been explored to improve operational stability of xylanase. Thermostable xylanases have also been used for improvement in animal feed nutritional value. Furthermore, they have been used directly in bakery and breweries, including a major use in paper and pulp industry as a biobleaching agent. This present review envisages some of such applications of thermostable xylanases for their bioengineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Beg, Q. K., Kapoor, M., Mahajan, L., & Hoondal, G. S. (2001). Microbial xylanases and their industrial applications: A review. Applied Microbiology and Biotechnology, 56, 326–338.

    Article  CAS  Google Scholar 

  2. Singh, S., Mandala, A. M., & Prior, B. A. (2003). Thermomyces lanuginosus: Properties of strains and their hemicellulases. FEMS Microbiology Reviews, 27, 3–16.

    Article  CAS  Google Scholar 

  3. Kulkarni, N., Shendye, A., & Rao, M. (1999). Molecular and biotechnological aspects of xylanases. FEMS Microbiology Reviews, 23, 411–456.

    Article  CAS  Google Scholar 

  4. Basu, M., Kumar, V., & Shukla, P. (2017). Recombinant approaches for microbial xylanases: Recent advances and perspectives. Current Protein and Peptide Science. https://doi.org/10.2174/1389203718666161122110200.

    Google Scholar 

  5. Beg, Q. K., Bhushan, B., Kapoor, M., & Hoondal, G. S. (2000). Production & characterization of thermostable xylanase & pactinase from Streptomyces sp. QG- 11-3. Journal of Industrial Microbiology and Biotechnology, 24, 396–402.

    Article  CAS  Google Scholar 

  6. Touzel, J. P., O’Donohue, M., Debeire, P., Samain, E., & Breton, C. (2000). Thermobacillus xylanilyticus gen. Nov., sp. Nov., a new aerobic thermophillic xylan-degrading bacterium isolated from farm soil. International Journal of Systematic and Evolutionary Microbiology, 50, 315–320.

    Article  CAS  Google Scholar 

  7. Kumar, V., Chhabra, D., & Shukla, P. (2017). Xylanase production from Thermomyces lanuginosus VAPS-24 using low cost agro-industrial residues via hybrid optimization tools and its potential use for saccharification. Bioresource Technology, 243, 1009–1019.

    Article  CAS  Google Scholar 

  8. Kumar, V., Marín-Navarro, J., & Shukla, P. (2016). Thermostable microbial xylanases for pulp and paper industries: Trends, applications and further perspectives. World Journal of Microbiology & Biotechnology, 32(2), 34. https://doi.org/10.1007/s11274-015-2005-0.

    Article  Google Scholar 

  9. Vieille, C., & Zeikus, G. J. (2001). Hyperthermophilic enzymes: Sources, uses & molecular mechanisms for thermostability. Microbiology and Molecular Biology Reviews, 65, 1–43.

    Article  CAS  Google Scholar 

  10. Lo Leggio, L., Kalogiannis, S., Bhat, M. K., & Pickersgill, R. W. (1999). High resolution structure & sequence of T. aurantiacus xylanase I: Implications for the evolution of thermostability in family 10 xylanases & enzymes with (beta) alpha-barrel architecture. Proteins, 36, 295–306.

    Article  CAS  Google Scholar 

  11. Zverlov, V., Piotukh, K., Dakhova, O., Velikodvorskaya, G., & Borriss, R. (1996). The multidomain xylanase A of the hyper- thermophilic bacterium Thermotoga neapolitana is extremely thermoresistant. Applied Microbiology and Biotechnology, 45, 245–247.

    Article  CAS  Google Scholar 

  12. Abou-Hachem, M., Olsson, F., & Nordberg Karlsson, E. (2002). Probing the stability of the modular family 10 xylanase from Rhodothermus marinus. Extremophiles, 7, 483–491.

    Article  Google Scholar 

  13. Luthi, E., Jasmat, N. B., & Bergquist, P. L. (1990). Xylanase from the extremely thermophilic bacterium Caldocellum saccharolyticum: Overexpression of the 15 gene in Escherichia coli & characterisation of the gene product. Applied and Environment Microbiology, 36, 2677–2683.

    Google Scholar 

  14. Khasin, A., Alchanati, I., & Shoham, Y. (1993). Purification & characterization of a thermostable xylanase from Bacillus stearothermophilus T-6. Applied and Environment Microbiology, 59, 1725–1730.

    CAS  Google Scholar 

  15. Winterhalter, C., Heinrich, P., Candussio, A., Wich, G., & Liebl, W. (1995). Identification of a novel cellulose-binding domain within the multidomain 120 kDa xylanase XynA of the hyperthermophilic bacterium Thermotoga maritime. Molecular Microbiology, 15, 431–444.

    Article  CAS  Google Scholar 

  16. Simpson, H. D., Haufler, U. R., & Daniel, R. M. (1991). An extremely thermostable xylanase from the thermophilic eubacterium Thermotoga. Biochemical Journal, 277, 413–417.

    Article  CAS  Google Scholar 

  17. Amel, B. D., Nawel, B., Khelifa, B., Mohammed, G., Manon, J., Salima, K. G., et al. (2016). Characterization of a purified thermostable xylanase from Caldicoprobacter algeriensis sp. nov. strain TH7C1(T). Carbohydrate Research, 419, 60–68.

    Article  CAS  Google Scholar 

  18. Hakulinen, N., Turunen, O., Janis, J., Leisola, M., & Rouvinen, J. (2003). Three- dimensional structures of thermophilic beta-1,4-xylanases from Chaetomium thermophilum & Nonomuraea flexuosa comparison of twelve xylanases in relation to their thermal stability. European Journal of Biochemistry, 270, 1399–1412.

    Article  CAS  Google Scholar 

  19. Fan, G., Yang, S., Yan, Q., Guo, Y., Li, Y., & Jiang, Z. (2014). Characterization of a highly thermostable glycoside hydrolase family 10 xylanase from Malbranchea cinnamomea. International Journal of Biological Macromolecules, 70, 482–489.

    Article  CAS  Google Scholar 

  20. Kumar, P. R., Eswaramoorthy, S., Vithayathil, P. J., & Viswamitra, M. A. (2000). The tertiary structure at 1.59 Å resolution & the proposed amino acid sequence of a family-11 xylanase from the thermophilic fungus. Journal of Molecular Biology, 295, 581–593.

    Article  CAS  Google Scholar 

  21. Shrivastava, S., Kumar, V., Baweja, M., & Shukla, P. (2016). Enhanced Xylanase production from Thermomyces lanuginosus NCIM 1374/DSM 28966 using statistical analysis. Journal of Pure and Applied Microbiology, 10(3), 2225–2230.

    CAS  Google Scholar 

  22. Andrade, C. M. M. C., Pereira, N., & Antranikian, G. (1999). Extremely thermophilic microorganisms & their polymer- hydrolytic enzymes. Revista de Microbiologia, 30, 287–298.

    Article  CAS  Google Scholar 

  23. Cady, S. G., Bauer, M. W., Callen, W., Snead, M. A., Mathur, E. J., Short, J. M., et al. (2001). Beta-endoglucanase from Pyrococcus furiosus. Methods in Enzymology, 330, 346–354.

    Article  CAS  Google Scholar 

  24. Cannio, R., Di Prizito, N., Rossi, M., & Morana, A. (2004). A xylan-degrading strain of Sulfolobus solfataricus: Isolation & characterization of the xylanase activity. Extremophiles, 8, 117–124.

    Article  CAS  Google Scholar 

  25. Kumar, V., & Shukla, P. (2015). Functional aspects of xylanases toward industrial applications. In P. Shukla (Ed.), Frontier discoveries and innovations in interdisciplinary microbiology (pp. 157–165). Berlin: Springer.

    Google Scholar 

  26. Tiwari, R., Pranaw, K., Singh, S., Nain, P. K., Shukla, P., & Nain, L. (2016). Two-step statistical optimization for cold active β-glucosidase production from Pseudomonas lutea BG8 and its application for improving saccharification of paddy straw. Biotechnology and Applied Biochemistry, 63(5), 659–668.

    Article  CAS  Google Scholar 

  27. Saha, B. (2003). Hemicellulose bioconversion. Journal of Industrial Microbiology and Biotechnology, 30, 279–291.

    Article  CAS  Google Scholar 

  28. Kocabas, D. S., Guder, S., & Ozben, N. (2015). Purification strategies and properties of a low molecular weight xylanase and its application in agricultural waste biomass hydrolysis. Journal of Molecular Catalysis. B, Enzymatic, 115, 66–75.

    Article  Google Scholar 

  29. Harshvardhan, K., Mishra, A., & Jha, B. (2013). Purification and characterization of cellulase from a marine Bacillus sp. H1666: A potential agent for single step saccharification of sea weed biomass. Journal of Molecular Catalysis. B, Enzymatic, 93, 51–56.

    Article  CAS  Google Scholar 

  30. Premalatha, N., Gopal, N. O., Jose, P. A., Anandham, R., & Kwon, S. W. (2015). Optimization of cellulase production by Enhydrobacter sp. ACCA2 and its application in biomass saccharification. Frontiers in Microbiology, 6, 1046. https://doi.org/10.3389/fmicb.2015.01046.

    Article  Google Scholar 

  31. Santhi, V. S., Bhagat, A. K., Saranya, S., Govindarajan, G., & Jebakumar, S. R. D. (2014). Seaweed (Eucheumacottonii) associated microorganisms, a versatile enzyme source for the lignocellulosic biomass processing. International Biodeterioration and Biodegradation, 96, 144–151.

    Article  Google Scholar 

  32. Aachary, A. A., & Prapulla, S. G. (2011). Xylooligosaccharides (XOS) as an emerging prebiotic: Microbial synthesis, utilization, structural characterization, bioactive properties and applications. Comprehensive Reviews in Food Science and Food Safety, 10, 1–15.

    Article  Google Scholar 

  33. Kumar, G. P., Pushpa, A., & Prabha, H. (2012). A review on xylooligosaccharides. IRJP, 3, 71–74.

    Google Scholar 

  34. Shekhar, C., Thakur, S. S., & Shelke, S. K. (2010). Effect of exogenous fibrolytic enzymes supplementation on milk production and nutrient utilization in Murrah buffaloes. Tropical Animal Health and Production, 42, 1465–1470.

    Article  Google Scholar 

  35. Awalgaonkar, G., Sarkar, S., Bankar, S., & Singhal, R. S. (2015). Xylanase as a processing aid for papads, an Indian traditional food based on black gram. Food Science and Technology, 62(2), 1148–1153.

    CAS  Google Scholar 

  36. Café, M. B., Borges, A., Fritts, A., & Waldroup, W. (2006) Avizyme improves performance of broilers fed corn-soybean meal based diets. Poultry Science Department, University of Arkansas, Fayetteville AR 72701.

  37. Moehlenbrock, M. J., & Minteer, S. D. (2017). Introduction to the field of enzyme immobilization and stabilization. In S. Minteer (Ed.), Enzyme stabilization and immobilization: Methods in molecular biology. New York, NY: Humana Press.

  38. Aissaoui, N., Landoulsi, J., Bergaoui, L., Boujday, S., & Lambert, J. F. (2013). Catalytic activity and thermostability of enzymes immobilized on silanized surface: Influence of the crosslinking agent. Enyzme and Microbial Technology, 52, 336–343.

    Article  CAS  Google Scholar 

  39. Mateo, C., Palomo, J. M., Fernandez-Lorente, G., Guisan, J. M., & Lafuente, R. F. (2007). Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enyzme and Microbial Technology, 40, 1451–1463.

    Article  CAS  Google Scholar 

  40. Brady, D., & Jordaan, J. (2009). Advances in enzyme immobilisation. Biotechnology Letters, 31, 1639–1650.

    Article  CAS  Google Scholar 

  41. Chiyanzu, I., Cowan, D. A., & Burton, S. G. (2010). Immobilization of Geobacillus pallidus RAPc8 nitrile hydratase (NHase) reduces substrate inhibition and enhances thermostability. Journal of Molecular Catalysis. B, Enzymatic, 63, 109–115.

    Article  CAS  Google Scholar 

  42. Tang, C., Saquing, C. D., Sarin, P. K., Kelly, R. M., & Khan, S. A. (2014). Nanofibrous membranes for single-step immobilization of hyperthermophilic enzymes. Journal of Membrane Science, 472, 251–260.

    Article  CAS  Google Scholar 

  43. Cakmak, U., & Ertunga, N. S. (2017) Gene cloning, expression, immobilization and characterization of endo-xylanase from Geobacillus sp. TF16 and investigation of its industrial applications. Journal of Molecular Catalysis B: Enzymatic. https://doi.org/10.1016/j.molcatb.2017.01.016.

  44. Heinen, P. R., Pereira, M. G., Rechia, C. G. V., et al. (2017). Immobilized endo-xylanase of Aspergillus tamarii Kita: An interesting biological tool for production of xylooligosaccharides at high temperatures. Process Biochemistry, 53, 145–152.

    Article  CAS  Google Scholar 

  45. Jampala, P., Preethi, M., Ramanujam, S., Harish, B. S., Uppuluri, K. B., & Anbazhagan, V. (2017). Immobilization of levan-xylanase nanohybrid on an alginate bead improves xylanase stability at wide pH and temperature. International Journal of Biological Macromolecules, 95, 843–849.

    Article  CAS  Google Scholar 

  46. Kumar, S., Haq, I., Prakash, J., & Raj, A. (2017). Improved enzyme properties upon glutaraldehyde cross-linking of alginate entrapped xylanase from Bacillus licheniformis. International Journal of Biological Macromolecules, 98, 24–33.

    Article  CAS  Google Scholar 

  47. Chen, M., Zeng, G., Xu, P., Lai, C., & Tang, L. (2017). How do enzymes “Meet” nanoparticles and nanomaterials? Trends in biochemical sciences, 42(11), 914–930.

    Article  CAS  Google Scholar 

  48. Wang, J., Liu, Z., & Zhou, Z. (2017). Improving pullulanase catalysis via reversible immobilization on modified Fe3O4@ polydopamine nanoparticles. Applied Biochemistry and Biotechnology, 182(4), 1–11.

    Google Scholar 

  49. Ansari, S. A., & Husain, Q. (2012). Potential applications of enzymes immobilized on/in nano materials: A review. Biotechnology Advances, 30, 512–523.

    Article  CAS  Google Scholar 

  50. Li, C., Jiang, S., Zhao, X., & Liang, H. (2017). Co-immobilization of enzymes and magnetic nanoparticles by metal-nucleotide hydrogel nanofibers for improving stability and recycling. Molecules, 22, 179.

    Article  Google Scholar 

  51. Liu, M., Dai, X., Guan, R., & Xu, X. (2014). Immobilization of Aspergillus niger xylanase A on Fe3O4-coated chitosan magnetic nanoparticles for xylooligosaccharide preparation. Catalysis Communications, 55, 6–10.

    Article  CAS  Google Scholar 

  52. Royvaran, M., Taheri-Kafrani, A., Landarani Isfahani, A., & Mohammadi, S. (2016). Functionalized superparamagnetic graphene oxide nanosheet in enzyme engineering: A highly dispersive, stable and robust biocatalyst. Chemical Engineering Journal, 288, 414–422.

    Article  CAS  Google Scholar 

  53. Singh, P. K., Kumar, V., Yadav, R., & Shukla, P. (2017). Bioengineering for microbial inulinases: Trends and applications. Current Protein and Peptide Science, 18(9), 966–972.

    Article  CAS  Google Scholar 

  54. Gupta, S. K., Srivastava, S. K., Sharma, A., Nalage, V. H., Salvi, D., Kushwaha, H., et al. (2017). Metabolic engineering of CHO cells for the development of a robust protein production platform. PLoS ONE, 12(8), e0181455.

    Article  Google Scholar 

  55. Basheer, S. M., & Chellappan, S. (2017) Enzyme engineering. In: Bioresources and bioprocess in biotechnology (pp. 151–168). Singapore: Springer.

  56. Pucci, F., & Rooman, M. (2017). Physical and molecular bases of protein thermal stability and cold adaptation. Current Opinion in Structural Biology, 42, 117–128.

    Article  CAS  Google Scholar 

  57. Kahrani, Z. F., Emamzadeh, R., Nazari, M., & Rasa, S. M. M. (2017). Molecular basis of thermostability enhancement of Renilla luciferase at higher temperatures by insertion of a disulfide bridge into the structure. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1865, 252–259.

    Article  Google Scholar 

  58. Chang, A., Scheer, M., Grote, A., et al. (2009). BRENDA, AMENDA and FRENDA the enzyme information system: New content and tools in 2009. Nucleic Acids Research, 37, D588–D592.

    Article  CAS  Google Scholar 

  59. Han, N., Miao, H., Ding, J., et al. (2017). Improving the thermostability of a fungal GH11 xylanase via site-directed mutagenesis guided by sequence and structural analysis. Biotechnology for Biofuels, 10, 133. https://doi.org/10.1186/s13068-017-0824-y.

    Article  Google Scholar 

  60. Ebert, M. C., & Pelletier, J. N. (2017). Computational tools for enzyme improvement: Why everyone can and should use them. Current Opinion in Chemical Biology, 37, 89–96.

    Article  CAS  Google Scholar 

  61. Wijma, H. J., Floor, R. J., & Janssen, D. B. (2013). Structure- and sequence-analysis inspired engineering of proteins for enhanced thermostability. Current Opinion in Structural Biology, 23, 588–594.

    Article  CAS  Google Scholar 

  62. Donohoue, P. D., Barrangou, R., & May, A. P. (2017). Advances in industrial biotechnology using CRISPR-cas systems. Trends in Biotechnology. https://doi.org/10.1016/j.tibtech.2017.07.007.

    Google Scholar 

  63. Yadav, R., Kumar, V., Baweja, M., & Shukla, P. (2016). Gene editing and genetic engineering approaches for advanced probiotics: A review. Critical Reviews in Food Science and Nutrition. https://doi.org/10.1080/10408398.2016.1274877.

    Google Scholar 

  64. Gupta, S. K., & Shukla, P. (2016). Gene editing for cell engineering: Trends and applications. Critical Reviews in Biotechnology. https://doi.org/10.1080/07388551.2016.1214557.

    Google Scholar 

  65. Bogdanove, A. J., & Voytas, D. F. (2011). TAL effectors: Customizable proteins for DNA targeting. Science, 333(6051), 1843–1846.

    Article  CAS  Google Scholar 

  66. Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., & Charpentier, E. (2012). A programmable dual-rna-guided dna endonuclease in adaptive bacterial immunity. Science, 337(6096), 816–821.

    Article  CAS  Google Scholar 

  67. Jakočiūnas, T., Jensen, M. K., & Keasling, J. D. (2016). CRISPR/Cas9 advances engineering of microbial cell factories. Metabolic Engineering, 34, 44–59.

    Article  Google Scholar 

  68. Qian, C., Liu, N., Yan, X., Wang, Q., Zhou, Z., & Wang, Q. (2015). Engineering a high-performance, metagenomic-derived novel xylanase with improved soluble protein yield and thermostability. Enyzme and Microbial Technology, 70, 35–41.

    Article  CAS  Google Scholar 

  69. Boonyapakron, K., Jaruwat, A., Liwnaree, B., Nimchua, T., Champreda, V., & Chitnumsub, P. (2017). Structure-based protein engineering for thermostable and alkaliphilic enhancement of endo-β-1,4-xylanase for applications in pulp bleaching. Journal of Biotechnology, 259, 95–102.

    Article  CAS  Google Scholar 

  70. Denisenko, Y. A., Gusakov, A. V., Rozhkova, A. M., Osipov, D. O., Zorov, I. N., Matys, V. Y., et al. (2017). Site-directed mutagenesis of GH10 xylanase A from Penicillium canescens for determining factors affecting the enzyme thermostability. International Journal of Biological Macromolecules, 104A, 665–671.

    Article  Google Scholar 

  71. Abdul Wahab, M. K. H. B., Jonet, M. A. B., & Illias, R. M. (2016). Thermostability enhancement of xylanase Aspergillus fumigatus RT-1. Journal of Molecular Catalysis. B, Enzymatic, 134, 154–163.

    Article  Google Scholar 

  72. Acevedo, J. P., Reetz, M. T., Asenjo, J. A., & Parra, L. P. (2017). One-step combined focused epPCR and saturation mutagenesis for thermostability evolution of a new cold-active xylanase. Enyzme and Microbial Technology, 100, 60–70.

    Article  CAS  Google Scholar 

  73. Tang, F., Chen, D., Yu, B., et al. (2017). Improving the thermostability of Trichoderma reesei xylanase 2 by introducing disulfide bonds. Electronic Journal of Biotechnology, 26, 52–59.

    Article  CAS  Google Scholar 

  74. de Souza, A. R., de Araújo, G. C., Zanphorlin, L. M., Ruller, R., Franco, F. C., Torres, F. A., et al. (2016). Engineering increased thermostability in the GH-10 endo-1,4-β-xylanase from Thermoascus aurantiacus CBMAI 756. International Journal of Biological Macromolecules, 93A, 20–26.

    Article  Google Scholar 

  75. Trevizano, L. M., Ventorim, R. Z., de Rezende, S. T., Silva Junior, F. P., & Guimarães, V. M. (2012). Thermostability improvement of Orpinomyces sp. xylanase by directed evolution. Journal of Molecular Catalysis. B, Enzymatic, 81, 12–18.

    Article  CAS  Google Scholar 

  76. Stephens, D. E., Rumbold, K., Permaul, K., Prior, B. A., & Singh, S. (2007). Directed evolution of the thermostable xylanase from Thermomyces lanuginosus. Journal of Biotechnology, 127(3), 348–354.

    Article  CAS  Google Scholar 

  77. Zhang, Z. G., Yi, Z. L., Pei, X. Q., & Wu, Z. L. (2010). Improving the thermostability of Geobacillus stearothermophilus xylanase XT6 by directed evolution and site-directed mutagenesis. Bioresource Technology, 101(23), 9272–9278.

    Article  CAS  Google Scholar 

  78. Irfan, M., Guler, H. I., Ozer, A., Sapmaz, M. T., Belduz, A. O., Hasan, F., et al. (2016). C-Terminal proline-rich sequence broadens the optimal temperature and pH ranges of recombinant xylanase from Geobacillus thermodenitrificans C5. Enyzme and Microbial Technology, 91, 34–41.

    Article  CAS  Google Scholar 

  79. Li, Q., Sun, B., Xiong, K., Teng, C., Xu, Y., Li, L., et al. (2017). Improving special hydrolysis characterization into Talaromyces thermophilus F1208 xylanase by engineering of N-terminal extension and site-directed mutagenesis in C-terminal. International Journal of Biological Macromolecules, 96, 451–458.

    Article  CAS  Google Scholar 

  80. Alponti, J. S., Maldonado, R. F., & Ward, R. J. (2016). Thermostabilization of Bacillus subtilis GH11 xylanase by surface charge engineering. International Journal of Biological Macromolecules, 87, 522–528.

    Article  CAS  Google Scholar 

  81. Chen, C. C., Luo, H., Han, X., Lv, P., Ko, T. P., Peng, W., et al. (2014). Structural perspectives of an engineered β-1, 4-xylanase with enhanced thermostability. Journal of Biotechnology, 189, 175–182.

    Article  CAS  Google Scholar 

  82. Wang, Y., Fu, Z., Huang, H., Zhang, H., Yao, B., Xiong, H., et al. (2012). Improved thermal performance of Thermomyces lanuginosus GH11 xylanase by engineering of an N-terminal disulfide bridge. Bioresource Technology, 112, 275–279.

    Article  CAS  Google Scholar 

  83. Ventorim, R. Z., de Oliveira Mendes, T. A., Trevizano, L. M., dos Santos Camargos, A. M., & Guimarães, V. M. (2017). Impact of the removal of N-terminal non-structured amino acids on activity and stability of xylanases from Orpinomyces sp. PC-2. International Journal of Biological Macromolecules. https://doi.org/10.1016/j.ijbiomac.2017.08.015.

    Google Scholar 

  84. Baweja, M., Singh, P. K., & Shukla, P. (2016). Enzyme technology, functional proteomics, and systems biology toward unraveling molecular basis for functionality and interactions in biotechnological processes. In P. Shukla (Ed.), Frontier discoveries and innovations in interdisciplinary microbiology (pp. 207–212). New Delhi: Springer India.

    Chapter  Google Scholar 

  85. Baweja, M., Singh, P. K., Sadaf, A., Tiwari, R., Nain, L., Khare, S. K., et al. (2017). Cost effective characterization process and molecular dynamic simulation of detergent compatible alkaline protease from Bacillus pumilus strain MP27. Process Biochemistry, 58, 199–203.

    Article  CAS  Google Scholar 

  86. Tiwari, R., Nain, L., Labrou, N. E., & Shukla, P. (2017). Bioprospecting of functional cellulases from metagenome for second generation biofuel production: A review. Critical Reviews in Microbiology, 44, 247–257.

    Google Scholar 

  87. Kumar, V., Baweja, M., Singh, P. K., & Shukla, P. (2016). Recent developments in systems biology and metabolic engineering of plant microbe interactions. Frontiers in Plant Science, 7, 1421. https://doi.org/10.3389/fpls.2016.01421.

    Google Scholar 

  88. Wrenbeck, E. E., Faber, M. S., & Whitehead, T. A. (2017). Deep sequencing methods for protein engineering and design. Current Opinion in Structural Biology, 45C, 36–44.

    Article  Google Scholar 

  89. Santero, E., Floriano, B., & Govantes, F. (2016). Harnessing the power of microbial metabolism. Current Opinion in Microbiology, 31, 63–69.

    Article  CAS  Google Scholar 

  90. Kohanski, M. A., & Collins, J. J. (2008). Rewiring Bacteria, two components at a Time. Cell, 133(6), 947–948.

    Article  CAS  Google Scholar 

  91. Tian, J., Ma, K., & Saaem, I. (2009). Advancing high-throughput gene synthesis technology. Molecular BioSystems, 5(7), 714–722.

    Article  CAS  Google Scholar 

  92. Esvelt, K. M., & Wang, H. H. (2014). Genome-scale engineering for systems and synthetic biology. Molecular Systems Biology, 9(1), 641.

    Article  Google Scholar 

  93. Wright, T. H., & Davis, B. G. (2017). Post-translational mutagenesis for installation of natural and unnatural amino acid side chains into recombinant proteins. Nature Protocols, 12(10), 2243–2250.

    Article  Google Scholar 

  94. Cui, Z., Mureev, S., Polinkovsky, M. E., Tnimov, Z., Guo, Z., Durek, T., et al. (2016). Combining sense and nonsense codon reassignment for site-selective protein modification with unnatural amino acids. ACS Synthetic Biology, 6(3), 535–544.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support from SERB, Department of Science and Technology (DST), Government of India (DST Fast Track Grant. No. SR/FT/LS-31/2012), and University Grants Commission (UGC), New Delhi, India (Grant No. 42-457/2013(SR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pratyoosh Shukla.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, V., Dangi, A.K. & Shukla, P. Engineering Thermostable Microbial Xylanases Toward its Industrial Applications. Mol Biotechnol 60, 226–235 (2018). https://doi.org/10.1007/s12033-018-0059-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-018-0059-6

Keywords

Navigation