Skip to main content

Advertisement

Log in

Hemoglobin-Induced Nitric Oxide Synthase Overexpression and Nitric Oxide Production Contribute to Blood–Brain Barrier Disruption in the Rat

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Hemoglobin (Hb) released from extravasated erythrocytes may have a critical role in the process of blood–brain barrier (BBB) disruption and subsequent edema formation after intracerebral hemorrhage (ICH). Excessive nitric oxide (NO) production synthesized by nitric oxide synthase (NOS) has been well documented to contribute to BBB disruption. However, considerably less attention has been focused on the role of NO in Hb-induced BBB disruption. This study was designed to examine the hypothesis that Hb-induced NOS overexpression and excessive NO production may contribute to the changes of tight junction (TJ) proteins and subsequent BBB dysfunction. Hemoglobin was infused with stereotactic guidance into the right caudate nucleus of male Sprague Dawley rats. Then, we investigated the effect of Hb on the BBB permeability, changes of TJ proteins (claudin-5, occludin, zonula occludens-1 (ZO-1), and junctional adhesion molecule-1 (JAM-1)), iron deposition, expression of inducible NOS (iNOS) and endothelial NOS (eNOS), as well as NO production. Hb injection caused a significant increase in BBB permeability. Significant reduction of claudin-5, ZO-1, and JAM-1 was observed after Hb injection as evidenced by PCR and immunofluorescence. After a decrease at early stage, occludin showed a fivefold increase in mRNA level at 7 days. Significant iron deposition was detectable from 48 h to 7 days in a time-dependent manner. The iNOS and eNOS levels dramatically increased after Hb injection concomitantly with large quantities of NO released. Furthermore, enhanced iNOS or eNOS immunoreactivity was co-localized with diffused or diminished claudin-5 staining. We concluded that overexpressed NOS and excessive NO production induced by Hb may contribute to BBB disruption, which may provide an important potential therapeutic target in the treatment of ICH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ (2010) Structure and function of the blood–brain barrier. Neurobiol Dis 37:13–25

    Article  PubMed  CAS  Google Scholar 

  • Balami JS, Buchan AM (2012) Complications of intracerebral haemorrhage. Lancet Neurol 11:101–118

    Article  PubMed  Google Scholar 

  • Bao X, Wu G, Hu S, Huang F (2008) Poly(ADP-ribose) polymerase activation and brain edema formation by hemoglobin after intracerebral hemorrhage in rats. Acta Neurochir Suppl 105:23–27

    Article  PubMed  CAS  Google Scholar 

  • Bazzoni G, Dejana E (2004) Endothelial cell-to-cell junctions: molecular organization and role in vascular homeostasis. Physiol Rev 84:869–901

    Article  PubMed  CAS  Google Scholar 

  • Beauchesne E, Desjardins P, Hazell AS, Butterworth RF (2009) eNOS gene deletion restores blood–brain barrier integrity and attenuates neurodegeneration in the thiamine-deficient mouse brain. J Neurochem 111:452–459

    Article  PubMed  CAS  Google Scholar 

  • Beckman JS, Koppenol WH (1996) Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol 271:C1424–C1437

    PubMed  CAS  Google Scholar 

  • Belayev L, Busto R, Zhao W, Ginsberg MD (1996) Quantitative evaluation of blood–brain barrier permeability following middle cerebral artery occlusion in rats. Brain Res 739:88–96

    Article  PubMed  CAS  Google Scholar 

  • Benarroch EE (2011) Nitric oxide: a pleiotropic signal in the nervous system. Neurology 77:1568–1576

    Article  PubMed  CAS  Google Scholar 

  • Bishop GM, Robinson SR (2001) Quantitative analysis of cell death and ferritin expression in response to cortical iron: implications for hypoxia–ischemia and stroke. Brain Res 907:175–187

    Article  PubMed  CAS  Google Scholar 

  • Bove PF, Wesley UV, Greul AK, Hristova M, Dostmann WR, van der Vliet A (2007) Nitric oxide promotes airway epithelial wound repair through enhanced activation of MMP-9. Am J Respir Cell Mol Biol 36:138–146

    Article  PubMed  CAS  Google Scholar 

  • Bulnes S, Argandona EG, Bengoetxea H, Leis O, Ortuzar N, Lafuente JV (2010) The role of eNOS in vascular permeability in ENU-induced gliomas. Acta Neurochir Suppl 106:277–282

    Article  PubMed  CAS  Google Scholar 

  • Buster BL, Weintrob AC, Townsend GC, Scheld WM (1995) Potential role of nitric oxide in the pathophysiology of experimental bacterial meningitis in rats. Infect Immun 63:3835–3839

    PubMed  CAS  Google Scholar 

  • Butt OI, Buehler PW, D'Agnillo F (2011) Blood–brain barrier disruption and oxidative stress in guinea pig after systemic exposure to modified cell-free hemoglobin. Am J Pathol 178:1316–1328

    Article  PubMed  CAS  Google Scholar 

  • Cera MR, Fabbri M, Molendini C, Corada M, Orsenigo F, Rehberg M, Reichel CA, Krombach F, Pardi R, Dejana E (2009) JAM-A promotes neutrophil chemotaxis by controlling integrin internalization and recycling. J Cell Sci 122:268–277

    Article  PubMed  CAS  Google Scholar 

  • Dulak J, Jozkowicz A (2003) Regulation of vascular endothelial growth factor synthesis by nitric oxide: facts and controversies. Antioxid Redox Signal 5:123–132

    Article  PubMed  CAS  Google Scholar 

  • Gebel JJ, Jauch EC, Brott TG, Khoury J, Sauerbeck L, Salisbury S, Spilker J, Tomsick TA, Duldner J, Broderick JP (2002) Relative edema volume is a predictor of outcome in patients with hyperacute spontaneous intracerebral hemorrhage. Stroke 33:2636–2641

    Article  PubMed  Google Scholar 

  • Gonzalez-Gay MA, Garcia-Unzueta MT, Berja A, Vazquez-Rodriguez TR, Miranda-Filloy JA, Gonzalez-Juanatey C, de Matias JM, Martin J, Dessein PH, Llorca J (2009) Short-term effect of anti-TNF-alpha therapy on nitric oxide production in patients with severe rheumatoid arthritis. Clin Exp Rheumatol 27:452–458

    PubMed  CAS  Google Scholar 

  • Gursoy-Ozdemir Y, Bolay H, Saribas O, Dalkara T (2000) Role of endothelial nitric oxide generation and peroxynitrite formation in reperfusion injury after focal cerebral ischemia. Stroke 31(8):1974–1980; discussion 1981

    Article  PubMed  CAS  Google Scholar 

  • Han YJ, Kwon YG, Chung HT, Lee SK, Simmons RL, Billiar TR, Kim YM (2001) Antioxidant enzymes suppress nitric oxide production through the inhibition of NF-kappa B activation: role of H(2)O(2) and nitric oxide in inducible nitric oxide synthase expression in macrophages. Nitric Oxide 5:504–513

    Article  PubMed  CAS  Google Scholar 

  • Han F, Shirasaki Y, Fukunaga K (2006) Microsphere embolism-induced endothelial nitric oxide synthase expression mediates disruption of the blood–brain barrier in rat brain. J Neurochem 99:97–106

    Article  PubMed  CAS  Google Scholar 

  • Huang FP, Xi G, Keep RF, Hua Y, Nemoianu A, Hoff JT (2002) Brain edema after experimental intracerebral hemorrhage: role of hemoglobin degradation products. J Neurosurg 96:287–293

    Article  PubMed  Google Scholar 

  • Katsu M, Niizuma K, Yoshioka H, Okami N, Sakata H, Chan PH (2010) Hemoglobin-induced oxidative stress contributes to matrix metalloproteinase activation and blood–brain barrier dysfunction in vivo. J Cereb Blood Flow Metab 30:1939–1950

    Article  PubMed  CAS  Google Scholar 

  • Keep RF, Xiang J, Ennis SR, Andjelkovic A, Hua Y, Xi G, Hoff JT (2008) Blood–brain barrier function in intracerebral hemorrhage. Acta Neurochir Suppl 105:73–77

    Article  PubMed  CAS  Google Scholar 

  • Keita M, Vincendeau P, Buguet A, Cespuglio R, Vallat JM, Dumas M, Bouteille B (2000) Inducible nitric oxide synthase and nitrotyrosine in the central nervous system of mice chronically infected with Trypanosoma brucei brucei. Exp Parasitol 95:19–27

    Article  PubMed  CAS  Google Scholar 

  • Kidd GA, Hong H, Majid A, Kaufman DI, Chen AF (2005) Inhibition of brain GTP cyclohydrolase I and tetrahydrobiopterin attenuates cerebral infarction via reducing inducible NO synthase and peroxynitrite in ischemic stroke. Stroke 36:2705–2711

    Article  PubMed  CAS  Google Scholar 

  • Kim DW, Im SH, Kim JY, Kim DE, Oh GT, Jeong SW (2009) Decreased brain edema after collagenase-induced intracerebral hemorrhage in mice lacking the inducible nitric oxide synthase gene. Laboratory investigation. J Neurosurg 111:995–1000

    Article  PubMed  CAS  Google Scholar 

  • Koeppen AH, Dickson AC, McEvoy JA (1995) The cellular reactions to experimental intracerebral hemorrhage. J Neurol Sci 134:102–112

    Article  PubMed  Google Scholar 

  • Laird MD, Wakade C, Alleyne CJ, Dhandapani KM (2008) Hemin-induced necroptosis involves glutathione depletion in mouse astrocytes. Free Radic Biol Med 45:1103–1114

    Article  PubMed  CAS  Google Scholar 

  • Li N, Liu YF, Ma L, Worthmann H, Wang YL, Wang YJ, Gao YP, Raab P, Dengler R, Weissenborn K, Zhao XQ (2013) Association of molecular markers with perihematomal edema and clinical outcome in intracerebral hemorrhage. Stroke 44(3):658–663

    Article  PubMed  CAS  Google Scholar 

  • Mandi Y, Ocsovszki I, Szabo D, Nagy Z, Nelson J, Molnar J (1998) Nitric oxide production and MDR expression by human brain endothelial cells. Anticancer Res 18:3049–3052

    PubMed  CAS  Google Scholar 

  • Mayhan WG (1995) Role of nitric oxide in disruption of the blood–brain barrier during acute hypertension. Brain Res 686:99–103

    Article  PubMed  CAS  Google Scholar 

  • Mayhan WG (2000) Nitric oxide donor-induced increase in permeability of the blood–brain barrier. Brain Res 866:101–108

    Article  PubMed  CAS  Google Scholar 

  • McCarthy SM, Bove PF, Matthews DE, Akaike T, van der Vliet A (2008) Nitric oxide regulation of MMP-9 activation and its relationship to modifications of the cysteine switch. Biochemistry 47:5832–5840

    Article  PubMed  CAS  Google Scholar 

  • Misra HP, Fridovich I (1972) The generation of superoxide radical during the autoxidation of hemoglobin. J Biol Chem 247:6960–6962

    PubMed  CAS  Google Scholar 

  • Nag S, Picard P, Stewart DJ (2000) Increased immunolocalization of nitric oxide synthases during blood–brain barrier breakdown and cerebral edema. Acta Neurochir Suppl 76:65–68

    PubMed  CAS  Google Scholar 

  • Parathath SR, Parathath S, Tsirka SE (2006) Nitric oxide mediates neurodegeneration and breakdown of the blood–brain barrier in tPA-dependent excitotoxic injury in mice. J Cell Sci 119:339–349

    Article  PubMed  CAS  Google Scholar 

  • Park HY, Lee MH, Kang SU, Hwang HS, Park K, Choung YH, Kim CH (2012) Nitric oxide mediates TNF-alpha-induced apoptosis in the auditory cell line. Laryngoscope 122:2256–2264

    Article  PubMed  CAS  Google Scholar 

  • Qing WG, Dong YQ, Ping TQ, Lai LG, Fang LD, Min HW, Xia L, Heng PY (2009) Brain edema after intracerebral hemorrhage in rats: the role of iron overload and aquaporin 4. J Neurosurg 110:462–468

    Article  PubMed  Google Scholar 

  • Qureshi AI, Mendelow AD, Hanley DF (2009) Intracerebral haemorrhage. Lancet 373:1632–1644

    Article  PubMed  Google Scholar 

  • Ryu JK, McLarnon JG (2006) Minocycline or iNOS inhibition block 3-nitrotyrosine increases and blood–brain barrier leakiness in amyloid beta-peptide-injected rat hippocampus. Exp Neurol 198:552–557

    Article  PubMed  CAS  Google Scholar 

  • Sehba FA, Bederson JB (2011) Nitric oxide in early brain injury after subarachnoid hemorrhage. Acta Neurochir Suppl 110:99–103

    PubMed  Google Scholar 

  • Shukla A, Dikshit M, Srimal RC (1995) Nitric oxide modulates blood–brain barrier permeability during infections with an inactivated bacterium. Neuroreport 6:1629–1632

    Article  PubMed  CAS  Google Scholar 

  • Song S, Hua Y, Keep RF, He Y, Wang J, Wu J, Xi G (2008) Deferoxamine reduces brain swelling in a rat model of hippocampal intracerebral hemorrhage. Acta Neurochir Suppl 105:13–18

    Article  PubMed  CAS  Google Scholar 

  • Tan KH, Harrington S, Purcell WM, Hurst RD (2004) Peroxynitrite mediates nitric oxide-induced blood–brain barrier damage. Neurochem Res 29:579–587

    Article  PubMed  CAS  Google Scholar 

  • Tsou HK, Su CM, Chen HT, Hsieh MH, Lin CJ, Lu DY, Tang CH, Chen YH (2010) Integrin-linked kinase is involved in TNF-alpha-induced inducible nitric-oxide synthase expression in myoblasts. J Cell Biochem 109:1244–1253

    PubMed  CAS  Google Scholar 

  • Won SM, Lee JH, Park UJ, Gwag J, Gwag BJ, Lee YB (2011) Iron mediates endothelial cell damage and blood–brain barrier opening in the hippocampus after transient forebrain ischemia in rats. Exp Mol Med 43:121–128

    Article  PubMed  CAS  Google Scholar 

  • Xi G, Keep RF, Hoff JT (1998) Erythrocytes and delayed brain edema formation following intracerebral hemorrhage in rats. J Neurosurg 89:991–996

    Article  PubMed  CAS  Google Scholar 

  • Xi G, Hua Y, Bhasin RR, Ennis SR, Keep RF, Hoff JT (2001) Mechanisms of edema formation after intracerebral hemorrhage: effects of extravasated red blood cells on blood flow and blood–brain barrier integrity. Stroke 32:2932–2938

    Article  PubMed  CAS  Google Scholar 

  • Xu J, Lan D, Li T, Yang G, Liu L (2012) Angiopoietins regulate vascular reactivity after haemorrhagic shock in rats through the Tie2-nitric oxide pathway. Cardiovasc Res 96:308–319

    Article  PubMed  CAS  Google Scholar 

  • Yoon JS, Lee JH, Tweedie D, Mughal MR, Chigurupati S, Greig NH, Mattson MP (2013) 3,6'-dithiothalidomide improves experimental stroke outcome by suppressing neuroinflammation. J Neurosci Res. doi:10.1002/jnr.23190

  • Zacharek A, Chen J, Zhang C, Cui X, Roberts C, Jiang H, Teng H, Chopp M (2006) Nitric oxide regulates Angiopoietin1/Tie2 expression after stroke. Neurosci Lett 404:28–32

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (no. 81271314), Natural Science Foundation of Guangdong (no. 5300468), and Special Project on the Integration of Industry, Education and Research of Guangdong Province and Ministry of Education (no. 2012B091100154).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yizhao Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, S., Chen, Y., Deng, X. et al. Hemoglobin-Induced Nitric Oxide Synthase Overexpression and Nitric Oxide Production Contribute to Blood–Brain Barrier Disruption in the Rat. J Mol Neurosci 51, 352–363 (2013). https://doi.org/10.1007/s12031-013-9990-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-013-9990-y

Keywords

Navigation