Skip to main content
Log in

Bacterial Keratinases: Useful Enzymes for Bioprocessing Agroindustrial Wastes and Beyond

  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Keratin-rich wastes in the form of feathers, hair, nails, and horn are highly available as byproducts of agroindustrial processing. The increased needs for energy conserving and recycling, summed with the huge increase in poultry industry, have strongly stimulated the search for alternatives for the management of recalcitrant keratinous wastes. Keratinases, which are produced by several bacteria that have been often isolated from soils and poultry wastes, show potential use in biotechnological processes involving keratin hydrolysis. Although these isolates are mostly restricted to the genera Streptomyces and Bacillus, the diversity of keratinolytic bacteria is significantly greater. Bacterial keratinases are mostly serine proteases, although increased information about keratinolytic metalloproteases, particularly from Gram-negative bacteria, became available. These enzymes are useful in processes related with the bioconversion of keratin waste into feed and fertilizers. Other promising applications have been associated with keratinolytic enzymes, including enzymatic dehairing for leather and cosmetic industry, detergent uses, and development of biopolymers from keratin fibers. The use of keratinases to enhance drug delivery in some tissues and hydrolysis of prion proteins arise as novel outstanding applications for these enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allpress, J. D., Mountain, G., & Gowland, P. C. (2002). Production, purification, and characterization of an extracellular keratinase from Lysobacter NCIMB 9497. Letters in Applied Microbiology, 34, 337–342.

    CAS  Google Scholar 

  • Atalo, K., & Gashe, B. A. (1993). Protease production by a thermophilic Bacillus species (P-001A) which degrades various kinds of fibrous proteins. Biotechnology Letters, 15, 1151–1156.

    CAS  Google Scholar 

  • Auld, D. S. (1995). Removal and replacement of metal ions in metallopeptidases. Methods in Enzymology, 248, 228–242.

    CAS  Google Scholar 

  • Bakhtiar, S., Estiveira, R. J., & Hatti-Kaul, R. (2005). Substrate specificity of alkaline protease from alkaliphilic feather-degrading Nesterenkonia sp. AL20. Enzyme and Microbial Technology, 37, 534–540.

    CAS  Google Scholar 

  • Bálint, B., Bagi, Z., Rákhely, G., Perei, K., & Kovács, K. L. (2005). Utilization of keratin-containing biowaste to produce biohydrogen. Applied Microbiology and Biotechnology, 69, 404–410.

    Google Scholar 

  • Barone, J. R., & Arikan, O. (2007). Composting and biodegradation of thermally processed feather keratin polymer. Polymer Degradation and Stability, 92, 859–867.

    CAS  Google Scholar 

  • Barone, J. R., & Schmidt, W. F. (2005). Polyethylene reinforced with keratin fibers obtained from chicken feathers. Composites Science and Technology, 65, 173–181.

    CAS  Google Scholar 

  • Bernal, C., Cairó, J., & Coello, N. (2006a). Purification and characterization of a novel exocellular keratinase from Kocuria rosea. Enzyme and Microbial Technology, 38, 49–54.

    CAS  Google Scholar 

  • Bernal, C., Diaz, I., & Coello, N. (2006b). Response surface methodology for the optimization of keratinase production in culture medium containing feathers produced by Kocuria rosea. Canadian Journal of Microbiology, 52, 445–450.

    CAS  Google Scholar 

  • Bertsch, A., & Coello, N. (2005). A biotechnological process for treatment and recycling poultry feathers as a feed ingredient. Bioresource Technology, 96, 1703–1708.

    CAS  Google Scholar 

  • Böckle, B., Galunski, B., & Müller, R. (1995). Characterization of a keratinolytic serine protease from Streptomyces pactum DSM40530. Applied and Environmental Microbiology, 61, 3705–3710.

    Google Scholar 

  • Böckle, B., & Müller, R. (1997). Reduction of disulfide bonds by Streptomyces pactum during growth on chicken feathers. Applied and Environmental Microbiology, 63, 790–792.

    Google Scholar 

  • Bradbury, J. H. (1973). The structure and chemistry of keratin fibers. Advances in Protein Chemistry, 27, 111–211.

    CAS  Google Scholar 

  • Brandelli, A. (2005). Hydrolysis of native proteins by a keratinolytic strain of Chryseobacterium sp. Annals of Microbiology, 55, 47–50.

    CAS  Google Scholar 

  • Brandelli, A., & Riffel, A. (2005). Production of an extracellular keratinase from Chryseobacterium sp. growing on raw feathers. Electronic Journal of Biotechnology, 8, 35–42.

    Article  CAS  Google Scholar 

  • Bressolier, P., Letourneau, F., Urdaci, M., & Verneuil, B. (1999). Purification and characterization of a keratinolytic serine proteinase from Streptomyces albidoflavus. Applied and Environmental Microbiology, 65, 2570–2576.

    Google Scholar 

  • Brouta, F., Deschamps, F., Fett, T., Losson, B., & Gerday, C. (2001). Purification and characterization of a 43.5 kDa keratinolytic metalloprotease from Microsporum canis. Medical Mycology, 39, 269–275.

    CAS  Google Scholar 

  • Burtt, E. H., & Ichida, J. M. (1999). Bacteria useful for degrading keratin. US Patent 6214676.

  • Cantera, C. S. (2001). Hair saving unhairing process. Part 4. Remarks on the evolution of the investigation on enzyme unhairing. Journal of the Society of Leather Technology Chemists, 85, 836–841.

    Google Scholar 

  • Caughey, B. (2001). Interactions between prion protein isoforms: The kiss of death? Trends in Biochemical Science, 26, 235–242.

    CAS  Google Scholar 

  • Chen, S. X., Swaissgood, H. E., & Foegeding, E., A. (1994). Gelation of β-lactoglobulin treated with limited proteolysis by immobilization trypsin. Journal of Agricultural and Food Chemistry, 42, 234–239.

    CAS  Google Scholar 

  • Cheng, S. W., Hu, H. M., Shen, S. W., Takagi, H., Asano, M., & Tsai, Y. C. (1995). Production and characterization of keratinase of a feather-degrading Bacillus licheniformis PWD-1. Bioscience Biotechnology and Biochemistry, 59, 2239–2243.

    CAS  Google Scholar 

  • Chitte, R. R., Nalawade, V. K., & Dey, S. (1999). Keratinolytic activity from the broth of a feather-degrading thermophilic Streptomyces thermoviolaceus strain SD8. Letters in Applied Microbiology, 28, 131–136.

    CAS  Google Scholar 

  • Choi, J. M., & Nelson, P. V. (1996). Developing a slow release nitrogen fertilizer from organic sources. II. Using poultry feathers. Journal of the American Society of Horticultural Science, 121, 639–643.

    Google Scholar 

  • Cohlberg, J. A. (1993). The structure of α-keratin. Trends in Biochemical Sciences, 18, 360–362.

    CAS  Google Scholar 

  • De Toni, C. H., Richter, M. F., Chagas, J. R., Henriques, J. A. P., & Termignoni, C. (2002). Purification and characterization of an alkaline serine endopeptidase from a feather-degrading Xanthomonas maltophila strain. Canadian Journal of Microbiology, 48, 342–348.

    Google Scholar 

  • Deschamps, F., Brouta, F., Vermout, S., Monod, M., Losson, B., & Mignon, B. (2003). Recombinant expression and antigenic properties of a 31.5 kDa keratinolytic subtilisin-like serine protease from Microsporum canis. FEMS Immunology and Medical Microbiology, 38, 29–34.

    Google Scholar 

  • Elmayergi, H. H., & Smith, R. E. (1971). Influence of growth of Streptomyces fradiae on pepsin-HCl digestibility and methionine content of feather meal. Canadian Journal of Microbiology, 17, 1067–1072.

    Article  CAS  Google Scholar 

  • Farag, A. M., & Hassan, M. A. (2004). Purification, characterization and immobilization of a keratinase from Aspergillus orizae. Enzyme and Microbial Technology, 34, 85–93.

    CAS  Google Scholar 

  • Friedrich, A. B., & Antranikian, G. (1996). Keratin degradation by Fervidobacterium pennavorans, a novel thermophilic anaerobic species of the order Thermatogales. Applied and Environmental Microbiology, 61, 3705–3710.

    Google Scholar 

  • George, S., Raju, V., Krishnan, M. R. V., Subramanian, T. E., & Jayraman, K. (1995). Production of protease by Bacillus amyloliquefaciens in solid-state fermentation and its application in the unhairing of hides and skins. Process Biochemistry, 30, 457–462.

    CAS  Google Scholar 

  • Gessesse, A., Hatti-Kaul, R., Gashe, B. A., & Mattiasson, B. (2003). Novel alkaline proteases from alkaliphilic bacteria grown on chicken feather. Enzyme and Microbial Technology, 32, 519–524.

    CAS  Google Scholar 

  • Giongo, J. L., Lucas, F. S., Casarin, F., Heeb, P., & Brandelli, A. (2007). Keratinolytic proteases of Bacillus species isolated from the Amazon basin showing remarkable de-hairing activity. World Journal of Microbiology and Biotechnology, 23, 375–382.

    CAS  Google Scholar 

  • Gradisar, H., Friedrich, J., Krizaj, I., & Jerala, R. (2005). Similarities and specificities of fungal keratinolytic proteases: Comparison of keratinases of Paecilomyces marquandii and Doratomyces microsporus to some known proteases. Applied and Environmental Microbiology, 71, 3420–3426.

    CAS  Google Scholar 

  • Gradisar, H., Kern, S., & Friedrich, J. (2000). Keratinase of Doratomyces microsporus. Applied Microbiology and Biotechnology, 53, 196–200.

    CAS  Google Scholar 

  • Grazziotin, A., Pimentel, F. A., de Jong, E. V., & Brandelli, A. (2006). Nutritional improvement of feather protein by treatment with microbial keratinase. Animal Feed Science and Technology, 126, 135–144.

    CAS  Google Scholar 

  • Grazziotin, A., Pimentel, F. A., Sangali, S., de Jong, E. V., & Brandelli, A. (2007). Production of feather protein hydrolysate by keratinolytic bacterium Vibrio sp. kr2. Bioresource Technology, 98, 3172–3175.

    CAS  Google Scholar 

  • Grzywnowicz, G., Lobarzewski, J., Wawrzkiewicz, K., & Wolski, T. (1989). Comparative characterization of proteolytic enzymes from Trichophyton gallinae and Trichophyton verrucosum. Journal of Medical and Veterinary Mycology, 27, 319–328.

    CAS  Google Scholar 

  • Gupta, R., Beg, Q. K., & Lorenz, P. (2002). Bacterial alkaline proteases: Molecular approaches and industrial applications. Applied Microbiology and Biotechnology, 59, 15–32.

    CAS  Google Scholar 

  • Gupta, R., & Ramnani, P. (2006). Microbial keratinases and their prospective applications: An overview. Applied Microbiology and Biotechnology, 70, 21–33.

    CAS  Google Scholar 

  • Gushterova, A., Vasileva-Tonkova, E., Dimova, E., Nedkov, P., & Haertlé, T. (2005). Keratinase production by newly isolated Antarctic actinomycete strains. World Journal of Microbiology and Biotechnology, 21, 831–834.

    CAS  Google Scholar 

  • Hadas, A., & Kautsky, L. (1994). Feather meal, a semi-slow-release nitrogen fertilizer for organic farming. Fertilizer Research, 38, 165–170.

    Google Scholar 

  • Holland, K. T. (1993). Protease from Micrococcus sedentarius for degrading protein of human callus or corn tissue. US Patent 5213978.

  • Hood, C. M., & Healy, M. G. (1994). Bioconversion of waste keratins: Wool and feathers. Resources Conservation and Recycling, 11, 179–188.

    Google Scholar 

  • Huang, Q., Peng, Y., & Li, X. (2003). Purification and characterization of an extracellular alkaline serine protease with dehairing function from Bacillus pumilis. Current Microbiology, 43, 169–173.

    Google Scholar 

  • Ichida, J. M., Krizova, L., LeFevre, C. A., Keener, H. M., Elwell, D. L., & Burtt, E. H. (2001). Bacterial inoculum enhances keratin degradation and biofilm formation in poultry compost. Journal of Microbiology Methods, 47, 199–208.

    CAS  Google Scholar 

  • Jacobs, M., Elliasson, M., Uhlen, H., & Flock, J. I. (1985). Cloning, sequencing and expression of subtilisin Carlsberg from Bacillus licheniformis. Nucleic Acids Research, 13, 8913–8926.

    Google Scholar 

  • Jurasek, L., Carpenter, M. R., Smillie, L. B., Getler, A., Levis, S., & Ericson, L. H. (1974). Amino acid sequence of Streptomyces griseus protease B, a major component of pronase. Biochemical and Biophysical Research Communications, 61, 1095–1100.

    CAS  Google Scholar 

  • Kaul, S., & Sumbali, G. (1997). Keratinolysis by poultry farm soil fungi. Mycopathologia, 139, 137–140.

    CAS  Google Scholar 

  • Kim, J. M., Choi, Y. M., & Suh, H. J. (2005). Preparation of feather digests as fertilizer with B. pumilus KHS-1. Journal of Microbiology and Biotechnology, 15, 472–476.

    CAS  Google Scholar 

  • Kim, J. S., Kluskens, L. D., de Vos, W. M., Huber, R., & vand der Oost, J. (2004). Crystal structure of fervidolysin from Fervidobacterium pennivorans, a keratinolytic enzyme related to subtilisin. Journal of Molecular Biology, 335, 787–797.

    CAS  Google Scholar 

  • Kim, J. M., Lim, W. J., & Suh, H. J. (2001). Feather-degrading Bacillus species from poultry waste. Process Biochemistry, 37, 287–291.

    CAS  Google Scholar 

  • Kluskens, L. D., Voorhorst, W. G. B., Siezen, R. J., Schwerdtfeger, R. M., Antranikian, G., van der Oost, J., et al. (2002). Molecular characterization of fervidolysin, a subtilisin-like serine protease from the thermophilic bacterium Fervidobacterium pennivorans. Extremophiles, 6, 185–194.

    CAS  Google Scholar 

  • Kojima, M., Kanai, M., Tominaga, M., Kitazume, S., Inoue, A., & Horikoshi, K. (2006). Isolation and characterization of a feather-degrading enzyme from Bacillus pseudofirmus FA30-01. Extremophiles, 10, 229–235.

    CAS  Google Scholar 

  • Korkmaz, H., Hür, H., & Dinçer, S. (2004). Characterization of alkaline keratinase of Bacillus licheniformis strain HK-1 from poultry waste. Annals of Microbiology, 54, 201–211.

    CAS  Google Scholar 

  • Kreplak, L., Doucet, J., Dumas, P., & Briki, F. (2004). New aspects of the α-helix to β-sheet transition in stretched hard α-keratin fibers. Biophysical Journal, 87, 640–647.

    CAS  Google Scholar 

  • Kumar, C. G., & Takagi, H. (1999). Microbial alkaline proteases: From a bioindustrial viewpoint. Biotechnology Advances, 17, 561–594.

    CAS  Google Scholar 

  • Kunert, J. (1992). Effect of reducing agents on proteolytic and keratinolytic activity of enzymes of Microsporum gypseum. Mycoses, 35, 343–348.

    Article  CAS  Google Scholar 

  • Kunert, J., & Stransky, Z. (1988). Thiosulfate production from cysteine by the keratinophilic prokatyote Streptomyces fradiae. Archives of Microbiology, 150, 600–601.

    CAS  Google Scholar 

  • Kushwaha, R. K. S. (1983). The in vitro degradation of peacock feathers by some fungi. Mykosen, 26, 324–326.

    CAS  Google Scholar 

  • Lal, S., Rajak, R. C., & Hasija, S. K. (1996). Biodegradation of keratin by actinomycetes inhabiting gelatin factory campus at Jablapur: Screening of isolates. Proceedings of the National Academy of Sciences India, 66, 175–180.

    Google Scholar 

  • Langeveld, J. P. M., Wang, J. J., van de Wiel, D. F. M., Shih, G. C., Garssen, G. J., Bossers, A., et al. (2003). Enzymatic degradation of prion protein in brain stem from infected cattle and sheep. Journal of Infectious Diseases, 188, 1782–1789.

    CAS  Google Scholar 

  • Lee, G. G., Ferket, P. R., & Shih, J. C. H. (1991). Improvement of feather digestibility by bacterial keratinase as a feed additive. FASEB Journal, 59, 1312.

    Google Scholar 

  • Lin, X., Inglis, G. D., Yanke, L. J., & Cheng, K. J. (1999). Selection and characterization of feather degrading bacteria from canola meal compost. Journal of Industrial Microbiology and Biotechnology, 23, 149–153.

    CAS  Google Scholar 

  • Lin, X., Kelemen, D. W., Miller, E. S., & Shih, J. C. H. (1995). Nucleotide sequence and expression of kerA, the gene encoding a keratinolytic protease of Bacillus licheniformis PWD-1. Applied and Environmental Microbiology, 61, 1469–1474.

    CAS  Google Scholar 

  • Lin, X., Lee, C. G., Casale, E. S., & Shih, J. C. H. (1992). Purification and characterization of a keratinase from a feather-degrading Bacillus licheniformis strain. Applied Environmental Microbiology, 58, 3271–3275.

    CAS  Google Scholar 

  • Lin, X., Shih, J. C. H., & Swaissgood, H. E. (1996). Hydrolysis of feather keratin by immobilized keratinase. Applied and Environmental Microbiology, 62, 4273–4275.

    CAS  Google Scholar 

  • Lucas, F. S., Broennimann, O., Febbraro, I., & Heeb, P. (2003). High diversity among feather-degrading bacteria from a dry meadow soil. Microbial Ecology, 45, 282–290.

    CAS  Google Scholar 

  • Macedo, A. J., Silva, W. O. B., Gava, R., Driemeier, D., Henriques, J. A. P., & Termignoni, C. (2005). Novel keratinase from Bacillus subtilis S14 showing remarkable dehairing capabilities. Applied and Environmental Microbiology, 71, 594–596.

    CAS  Google Scholar 

  • Means, G. E., & Feeney, R. E. (1998). Chemical modifications of proteins: A review. Journal of Food Biochemistry, 22, 399–425.

    CAS  Google Scholar 

  • Mitsuiki, S., Ichikawa, M., Oka, T., Sakai, M., Moriyama, Y., Sameshima, Y., et al. (2004). Molecular characterization of a keratinolytic enzyme from an alkaliphilic Nocardiopsis sp. TOA-1. Enzyme and Microbial Technology, 34, 482–489.

    CAS  Google Scholar 

  • Mohamedin, A. H. (1999). Isolation, identification and some cultural conditions of a protease-producing thermophilic Streptomyces strain grown on chicken feather as substrate. International Biodeterioration and Biodegradation, 43, 13–21.

    CAS  Google Scholar 

  • Mohorcic, M., Torkar, A., Friedrich, J., Kristl, J., & Murdan, S. (2007). An investigation into keratinolytic enzymes to enhance ungual drug delivery. International Journal of Pharmaceutics, 332, 196–201.

    CAS  Google Scholar 

  • Montero-Barrientos, M., Rivas, R., Velazquez, E., Monte, E., & Roig, M. G. (2005). Terrabacter terrae sp. nov., a novel actinomycete isolated from soil in Spain. International Journal of Systematic and Evolutionary Microbiology, 55, 2491–2495.

    CAS  Google Scholar 

  • Mukhopadhyay, R. P., & Chandra, A. L. (1990). Keratinase of a Streptomycete. Indian Journal of Experimental Biology, 28, 575–577.

    CAS  Google Scholar 

  • Nam, G. W., Lee, D. W., Lee, H. S., Lee, N. J., Kim, B. J., Choe, E. A., et al. (2002) Native feather degradation by Fervidobacterium islandicum AW-1, a newly isolating keratinase-producing thermophilic anaerobe. Archives of Microbiology, 178, 538–547.

    CAS  Google Scholar 

  • Neena, K. (1993). Cosmetic treatment of hirsutism. Indian Journal of Dermatology Venerology and Leprology, 59, 109–116.

    Google Scholar 

  • Noronha, E. F., Lime, B. D., Sá, C. M., & Felix, C. R. (2002). Heterologous production of Aspergillus fumigatus keratinase in Pichia pastoris. World Journal of Microbiology and Biotechnology, 18, 563–568.

    CAS  Google Scholar 

  • Noval, J. J., & Nickerson, W. J. (1959). Decomposition of native keratin by Streptomyces fradiae. Journal of Bacteriology, 77, 251–263.

    CAS  Google Scholar 

  • Odetallah, N. H., Wang, J. J., Garlich, J. D., & Shih, J. C. H. (2003). Keratinase in starter diets improves growth of broiler chicks. Poultry Science, 82, 664–670.

    CAS  Google Scholar 

  • Onifade, A. A., Al-Sane, N. A., Al-Musallam, A. A., & Al-Zarban, S. (1998). Potentials for biotechnological applications of keratin-degrading microorganisms and their enzymes for nutritional improvement of feathers and other keratins as livestock feed resources. Bioresource Technology, 66, 1–11.

    CAS  Google Scholar 

  • Papadopoulos, M. C., El Boushy, A. R., Roodbeen, A. E., & Ketelaars, E. H. (1986). Effects of processing time and moisture content on amino acid composition and nitrogen characteristics of feather meal. Animal Feed Science and Technology, 14, 279–290.

    Google Scholar 

  • Parry, D. A. D., & North, A. C. T. (1998). Hard α-keratin intermediate filament chains: Substructure of the N- and C-terminal domains and the predicted structure and function of the C-terminal domains of type I and type II chains. Journal of Structural Biology, 122, 67–75.

    CAS  Google Scholar 

  • Plummer, T. H., Tarentino, A. L., & Hauer, C. R. (1995). Novel, specific O-glycosylation of secreted Flavobacerium meningosepticum proteins. Journal of Biological Chemistry, 270, 33192–33196.

    Google Scholar 

  • Porres, J. M., Benito, M. J., & Lei, X. G. (2002). Functional expression of keratinase (kerA) gene from Bacillus licheniformis in Pichia pastoris. Biotechnology Letters, 24, 631–636.

    CAS  Google Scholar 

  • Ramnani, P., & Gupta, R. (2004). Optimization of medium composition for keratinase production on feather by Bacillus licheniformis RG1 using statistical methods involving response surface methodology. Biotechnology and Applied Biochemistry, 40, 491–496.

    Google Scholar 

  • Riessen, S., & Antranikian, G. (2001). Isolation of Thermoanaerobacter keratinophilus sp. nov., a novel thermophilic, anaerobic bacterium with keratinolytic activity. Extremophiles, 5, 399–408.

    CAS  Google Scholar 

  • Riffel, A., & Brandelli, A. (2002). Isolation and characterization of a feather-degrading bacterium from the poultry processing industry. Journal of Industrial Microbiology and Biotechnology, 29, 255–258.

    CAS  Google Scholar 

  • Riffel, A., & Brandelli, A. (2006). Keratinolytic bacteria isolated from feather waste. Brazilian Journal of Microbiology, 37, 395–399.

    CAS  Google Scholar 

  • Riffel, A., Brandelli, A., Bellato, C. M., Souza, G. H. M. F., Eberlin, M. N., & Tavares, F. C. A. (2007). Purification and characterization of a keratinolytic metalloprotease from Chryseobacterium sp. kr6. Journal of Biotechnology, 128, 693–703.

    CAS  Google Scholar 

  • Riffel, A., Lucas, F., Heeb, P., & Brandelli, A. (2003a). Characterization of a new keratinolytic bacterium that completely degrades native feather keratin. Archives of Microbiology, 179, 258–265.

    CAS  Google Scholar 

  • Riffel, A., Ortolan, S., & Brandelli, A. (2003b). De-hairing activity of extracellular proteases produced by keratinolytic bacteria. Journal of Chemical Technology and Biotechnology, 78, 855–859.

    CAS  Google Scholar 

  • Rozs, M., Manczinger, L., Vagvolgyi, C., & Kevei, F. (2001). Secretion of a trypsin-like thiol protease from by a new keratinolytic strain of Bacillus licheniformis. FEMS Microbiology Letters, 205, 221–224.

    CAS  Google Scholar 

  • Sangali, S., & Brandelli, A. (2000a). Feather keratin hydrolysis by a Vibrio sp. strain kr2. Journal of Applied Microbiology, 89, 735–743.

    CAS  Google Scholar 

  • Sangali, S., & Brandelli, A. (2000b). Isolation and characterization of a novel feather-degrading bacterial strain. Applied Biochemistry and Biotechnology, 87, 17–24.

    CAS  Google Scholar 

  • Santos, R. M. D., Firmino, A. A. P., Sá, C. M., & Felix, C. R. (1996). Keratinolytic activity of Aspergillus fumigatus Fresenius. Current Microbiology, 33, 364–370.

    CAS  Google Scholar 

  • Schraeder, C. E., Ervin, R. T., & Eberrspacher, J. L. (1998). Economic analysis of the feasibility of using enzymes in the unhairing process. Journal of the American Leather Chemists Association, 93, 265–271.

    CAS  Google Scholar 

  • Schrooyen, P. M. M., Dijkstra, P. J., Oberthur, R. C., Bantjes, A., & Feijen, J. (2001). Partially carboxymethylated feather keratins. 2. Thermal and mechanical properties of films. Journal of Agricultural and Food Chemistry, 49, 221–230.

    CAS  Google Scholar 

  • Shama, G., & Berwick, P. G. (1991). Production of keratinolytic enzymes in a rotating frame bioreactor. Biotechnology Techniques, 5, 359–362.

    CAS  Google Scholar 

  • Shih, J. C. H. (1993). Recent development in poultry waste digestion and feather utilization—A review. Poultry Science, 72, 1617–1620.

    Google Scholar 

  • Shih, J. C. H., & Wang, J. J. (2006). Keratinase technology: From feather degradation and feed additive, to prion destruction. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 1(42), 6 pp.

  • Shih, J. C. H., & Williams, C. M. (1990). Feather-lysate, a hydrolyzed feather feed ingredient and animal feeds containing the same. US Patent 4908220.

  • Slavtcheff, C. S., Goldberg, J. W., Shiloach, A., Massaro, M., & Kennedy, C. E. (2004). Method and kit for reducing irritation of skin depilatory compositions. US Patent 20040219118.

  • Sorimachi, H., Ishiura, S., & Suzuki, K. (1997). Structure and physiological function of calpains. Biochemical Journal, 328, 721–732.

    CAS  Google Scholar 

  • Sousa, F., Jus, S., Erbel, A., Kokol, V., Cavaco-Paulo, A., & Gubitz, G. M. (2007). A novel metalloprotease from Bacillus cereus for protein fibre processing. Enzyme and Microbial Technology, 40, 1772–1781.

    CAS  Google Scholar 

  • Stahl, M. L., & Ferrari, E. (1984). Replacement of the Bacillus subtilis subtilisin structural gene with in-vitro derived mutant. Journal of Bacteriology, 158, 411–418.

    CAS  Google Scholar 

  • Steinert, P. M. (1993). Structure, function, and dynamics of keratin intermediate filaments. Journal of Investigative Dermatology, 100, 729–734.

    CAS  Google Scholar 

  • Suh, H. J., & Lee, H. K. (2001). Characterization of a keratinolytic serine protease from Bacillus subtilis KS-1. Journal of Protein Chemistry, 20, 165–169.

    CAS  Google Scholar 

  • Suzuki, Y., Tsujimoto, Y., Matsui, H., & Watanabe, K. (2006). Decomposition of extremely hard-to-degrade animal proteins by thermophilic bacteria. Journal of Bioscience and Bioengineering, 102, 73–81.

    CAS  Google Scholar 

  • Takami, H., Kobayashi, T., Aono, R., & Horikoshi, K. (1992a). Molecular cloning, nucleotide sequence and expression of the structural gene for a thermostable alkaline protease from Bacillus sp. no. AH-101. Applied Microbiology and Biotechnology, 38, 101–108.

    CAS  Google Scholar 

  • Takami, H., Nakamura, F., Aono, R., & Hirishiri, K. (1992b). Degradation of human hair by a thermostable alkaline proteinase from alkalophilic Bacillus sp. no. AH-101. Bioscience Biotechnology and Biochemistry, 56, 1667–1669.

    Article  CAS  Google Scholar 

  • Takami, H., Nogi, Y., & Horikoshi, K. (1999). Reidentification of the keratinase-producing facultatively alkaliphilic Bacillus sp. AH-101 as Bacillus halodurans. Extremophiles, 3, 293–296.

    CAS  Google Scholar 

  • Tarentino, A. L., Quinones, G., Grimwood, B. G., Hauer, C. R., & Plummer, T. H. (1995). Molecular cloning and sequence analysis of flavastascin: An O-glycosylated prokaryotic zinc metalloendopeptidase. Archives of Biochemistry and Biophysisics, 319, 281–285.

    CAS  Google Scholar 

  • Thanikaivelan, P., Rao, J. R., Nair, B. U., & Ramasami, T. (2004). Progress and recent trends in biotechnological methods for leather processing. Trends in Biotechnology, 22, 181–188.

    CAS  Google Scholar 

  • Thys, R. C. S., & Brandelli, A. (2006). Purification and properties of a keratinolytic metalloprotease from Microbacterium sp. Journal of Applied Microbiology, 101, 1259–1268.

    CAS  Google Scholar 

  • Thys, R. C. S., Guzzon, S. O., Cladera-Olivera, F., & Brandelli, A. (2006). Optimization of protease production by Microbacterium sp. on feather meal using response surface methodology. Process Biochemistry, 41, 67–73.

    CAS  Google Scholar 

  • Thys, R. C. S., Lucas, F. S., Riffel, A., Heeb, P., & Brandelli, A. (2004). Characterization of a protease of a feather-degrading Microbacterium species. Letters in Applied Microbiology, 39, 181–186.

    CAS  Google Scholar 

  • Varela, H., Ferrari, M. D., Belobrajdic, L., Vázquez, A., & Loperena, M. L. (1997). Skin unhairing proteases of Bacillus subtilis, production and partial characterization. Biotechnology Letters, 19, 755–758.

    CAS  Google Scholar 

  • Venter, H., Osthoff, G., & Litthauer, D. (1999). Purification and characterization of a metalloprotease from Chryseobacterium indologenes Ix9a and determination of the amino acid specificity with electrospray spectrometry. Protein Expression and Purification, 15, 282–295.

    CAS  Google Scholar 

  • Vignardet, C., Guillaume, Y. C., Michel, L., Friedrich, J., & Millet, J. (2001). Comparison of two hard keratinous substrates submitted to the action of a keratinase using an experimental design. International Journal of Pharmaceutics, 224, 115–122.

    CAS  Google Scholar 

  • Wang, X., & Parsons, C. M. (1997). Effect of processing systems on protein quality of feather meal and hog hair meals. Poultry Science, 76, 491–496.

    CAS  Google Scholar 

  • Wang, J. J., Rojanatavorn, K., & Shih, J. C. H. (2004). Increased production of Bacillus keratinase by chromosomal integration of multiple copies of the kerA gene. Biotechnology and Bioengineering, 87, 459–464.

    CAS  Google Scholar 

  • Wang, J. J., & Shih, J. C. H. (1999). Fermentation production of keratinase from Bacillus licheniformis PWD-1 and a recombinant B. subtilis FDB-29. Journal of Industrial Microbiology and Biotechnology, 22, 608–616.

    CAS  Google Scholar 

  • Wang, J. J., Swaisgood, H. E., & Shih, J. C. H. (2003a). Bioimmobilization of keratinase using Bacillus subtilis and Escherichia coli systems. Biotechnology and Bioengineering, 81, 421–429.

    CAS  Google Scholar 

  • Wang, J. J., Swaisgood, H. E., & Shih, J. C. H. (2003b). Production and characterization of bio-immobilized keratinase in proteolysis and keratinolysis. Enzyme and Microbial Technology, 32, 812–819.

    CAS  Google Scholar 

  • Werlang, P. O., & Brandelli, A. (2005). Characterization of a novel feather-degrading Bacillus sp. strain. Applied Biochemistry and Biotechnology, 120, 71–80.

    CAS  Google Scholar 

  • Williams, C. M., Lee, C. G., Garlich, J. D., & Shih, J. C. H. (1991). Evaluation of a bacterial feather fermentation product, feather-lysate, as a feed protein. Poultry Science, 70, 85–94.

    CAS  Google Scholar 

  • Williams, K. A., & Nelson, P. V. (1992). Low, controlled nutrient availability provided by organic waste materials for Chysanthemum. Journal of the American Society of Horticultural Science, 117, 422–429.

    Google Scholar 

  • Williams, C. M., Richter, C. S., MacKenzie, J. M., & Shih, J. C. H. (1990). Isolation, identification, and characterization of a feather-degrading bacterium. Applied and Environmental Microbiology, 56, 1509–1515.

    CAS  Google Scholar 

  • Yamamura, S., Morita, Y., Hasan, Q., Yokoyama, K., & Tamiya, E. (2002). Keratin degradation: A cooperative action of two enzymes from Stenotrophomonas sp. Biochemical and Biophysical Research Communications, 294, 1138–1143.

    CAS  Google Scholar 

  • Yamauchi, K., Yamauchi, A., Kusunoki, T., Khoda, A., & Konishi, Y. (1996). Preparation of stable aqueous solutions of keratins, and physicochemical and biodegradational properties of films. Journal of Biomedical Material Research, 31, 439–444.

    CAS  Google Scholar 

  • Yoshioka, M., Miwa, T., Horii, H., Takata, M., Yokoyama, T., Nishizawa, K., et al. (2007). Characterization of a proteolytic enzyme derived from a Bacillus strain that effectively degrades prion protein. Journal of Applied Microbiology, 102, 509–515.

    CAS  Google Scholar 

  • Zaghloul, T. I. (1998). Cloned Bacillus subtilis alkaline protease (aprA) gene showing high level of keratinolytic activity. Applied Biochemistry and Biotechnology, 70/72, 199–205.

    Article  Google Scholar 

  • Zaghloul, T. I., Haroun, M. A., El-Gayar, K., & Abedalal, A. (2004). Recycling of keratin-containing materials (chicken feather) through genetically engineered bacteria. Polymer–Plastics Technology and Engineering, 43, 1589–1599.

    CAS  Google Scholar 

Download references

Acknowledgements

The author is a research fellow of Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriano Brandelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brandelli, A. Bacterial Keratinases: Useful Enzymes for Bioprocessing Agroindustrial Wastes and Beyond. Food Bioprocess Technol 1, 105–116 (2008). https://doi.org/10.1007/s11947-007-0025-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-007-0025-y

Keywords

Navigation