Skip to main content

Advertisement

Log in

Immunotherapy for Brain Tumors

  • Neuro-oncology (GJ Lesser, Section Editor)
  • Published:
Current Treatment Options in Oncology Aims and scope Submit manuscript

Opinion statement

Despite aggressive surgery, radiation, and systemic chemotherapy, the prognosis for patients diagnosed with malignant brain tumors remains extremely poor, and standard treatments carry significant risks for long-term neurocognitive deficits. There is a clear and urgent need for the development of more effective treatments that will add minimal toxicity to standard therapies for invasive brain cancers. Cancer immunotherapy is a treatment modality that holds promise for the delivery of tumor-specific cytotoxicity, with the potential to eliminate brain tumor cells without harming the eloquent brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. •• Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68(1):7–30. https://doi.org/10.3322/caac.21442 This report compiled by the American Cancer Society includes the most recent data on cancer incidence, mortality, and survival as well as estimations of the numbers of new cancer cases and deaths that will occur in the United States.

    Article  PubMed  Google Scholar 

  2. •• Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ, Peske JD, et al. Structural and functional features of central nervous system lymphatic vessels. Nature. 2015;523(7560):337–41. https://doi.org/10.1038/nature14432 This article is the first to report the discovery of meningeal lymphatic vessels (or meningeal lymphatics), which are functional lymphatic vessels located parallel to the dural sinuses and meningeal arteries of the mammalian central nervous system. This is a significant finding in the field of neuroimmunology as it revolutionizes the traditional view of the brain being an immune-privileged entity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Manglani M, McGavern DB. New advances in CNS immunity against viral infection. Curr Opin Virol. 2018;28:116–26. https://doi.org/10.1016/j.coviro.2017.12.003.

    Article  CAS  PubMed  Google Scholar 

  4. Weller M, Butowski N, Tran DD, Recht LD, Lim M, Hirte H et al. Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII-expressing glioblastoma (ACT IV): a randomised, double-blind, international phase 3 trial. Lancet Oncol 2017b;18(10):1373–85. doi:https://doi.org/10.1016/S1470-2045(17)30517-X.

    Article  CAS  PubMed  Google Scholar 

  5. Inoges S, Tejada S, de Cerio AL, Gallego Perez-Larraya J, Espinos J, Idoate MA, et al. A phase II trial of autologous dendritic cell vaccination and radiochemotherapy following fluorescence-guided surgery in newly diagnosed glioblastoma patients. J Transl Med. 2017;15(1):104. https://doi.org/10.1186/s12967-017-1202-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mitchell DA, Batich KA, Gunn MD, Huang MN, Sanchez-Perez L, Nair SK, et al. Tetanus toxoid and CCL3 improve dendritic cell vaccines in mice and glioblastoma patients. Nature. 2015b;519(7543):366–9. https://doi.org/10.1038/nature14320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Batich KA, Reap EA, Archer GE, Sanchez-Perez L, Nair SK, Schmittling RJ, et al. Long-term survival in glioblastoma with cytomegalovirus pp65-targeted vaccination. Clin Cancer Res. 2017;23(8):1898–909. https://doi.org/10.1158/1078-0432.ccr-16-2057.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fenstermaker RA, Ciesielski MJ, Qiu J, Yang N, Frank CL, Lee KP, et al. Clinical study of a survivin long peptide vaccine (SurVaxM) in patients with recurrent malignant glioma. Cancer Immunol Immunother. 2016;65(11):1339–52. https://doi.org/10.1007/s00262-016-1890-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rampling R, Peoples S, Mulholland PJ, James A, Al-Salihi O, Twelves CJ, et al. A Cancer Research UK first time in human Phase I trial of IMA950 (novel multipeptide therapeutic vaccine) in patients with newly diagnosed glioblastoma. Clin Cancer Res. 2016;22(19):4776–85. https://doi.org/10.1158/1078-0432.ccr-16-0506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Oji Y, Hashimoto N, Tsuboi A, Murakami Y, Iwai M, Kagawa N, et al. Association of WT1 IgG antibody against WT1 peptide with prolonged survival in glioblastoma multiforme patients vaccinated with WT1 peptide. Int J Cancer. 2016;139(6):1391–401. https://doi.org/10.1002/ijc.30182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Izumoto S, Tsuboi A, Oka Y, Suzuki T, Hashiba T, Kagawa N, et al. Phase II clinical trial of Wilms tumor 1 peptide vaccination for patients with recurrent glioblastoma multiforme. J Neurosurg. 2008;108(5):963–71. https://doi.org/10.3171/JNS/2008/108/5/0963.

    Article  CAS  PubMed  Google Scholar 

  12. Curry WT Jr, Gorrepati R, Piesche M, Sasada T, Agarwalla P, Jones PS, et al. Vaccination with irradiated autologous tumor cells mixed with irradiated GM-K562 cells stimulates antitumor immunity and T lymphocyte activation in patients with recurrent malignant glioma. Clin Cancer Res. 2016;22(12):2885–96. https://doi.org/10.1158/1078-0432.ccr-15-2163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cacciavillano W, Sampor C, Venier C, Gabri MR, de Davila MT, Galluzzo ML, et al. A Phase I study of the anti-idiotype vaccine racotumomab in neuroblastoma and other pediatric refractory malignancies. Pediatr Blood Cancer. 2015;62(12):2120–4. https://doi.org/10.1002/pbc.25631.

    Article  CAS  PubMed  Google Scholar 

  14. Schuster J, Lai RK, Recht LD, Reardon DA, Paleologos NA, Groves MD, et al. A phase II, multicenter trial of rindopepimut (CDX-110) in newly diagnosed glioblastoma: the ACT III study. Neuro Oncol. 2015;17(6):854–61. https://doi.org/10.1093/neuonc/nou348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Okada H, Butterfield LH, Hamilton RL, Hoji A, Sakaki M, Ahn BJ, et al. Induction of robust type-I CD8+ T-cell responses in WHO grade 2 low-grade glioma patients receiving peptide-based vaccines in combination with poly-ICLC. Clin Cancer Res. 2015;21(2):286–94. https://doi.org/10.1158/1078-0432.ccr-14-1790.

    Article  CAS  PubMed  Google Scholar 

  16. Hunn MK, Bauer E, Wood CE, Gasser O, Dzhelali M, Ancelet LR, et al. Dendritic cell vaccination combined with temozolomide retreatment: results of a phase I trial in patients with recurrent glioblastoma multiforme. J Neurooncol. 2015;121(2):319–29. https://doi.org/10.1007/s11060-014-1635-7.

    Article  CAS  PubMed  Google Scholar 

  17. Ishikawa E, Muragaki Y, Yamamoto T, Maruyama T, Tsuboi K, Ikuta S, et al. Phase I/IIa trial of fractionated radiotherapy, temozolomide, and autologous formalin-fixed tumor vaccine for newly diagnosed glioblastoma. J Neurosurg. 2014;121(3):543–53. https://doi.org/10.3171/2014.5.jns132392.

    Article  CAS  PubMed  Google Scholar 

  18. Bloch O, Parsa AT. Heat shock protein peptide complex-96 (HSPPC-96) vaccination for recurrent glioblastoma: a phase II, single arm trial. Neuro Oncol. 2014;16(5):758–9. https://doi.org/10.1093/neuonc/nou054.

    Article  PubMed  PubMed Central  Google Scholar 

  19. • Ahmed N, Brawley V, Hegde M, Bielamowicz K, Kalra M, Landi D, et al. HER2-specific chimeric antigen receptor-modified virus-specific T cells for progressive glioblastoma: a Phase 1 dose-escalation trial. JAMA Oncol. 2017a;3(8):1094–101. https://doi.org/10.1001/jamaoncol.2017.0184 This article reports the results from the first clinical study using CAR T cells for adoptive therapy of patients with glioblastoma. Infusion of autologous HER2-specific CAR-modified virus-specific T cells was safe and could be associated with clinical benefit. For the entire study cohort, median overall survival was 11.1 months from the first T cell infusion and 24.5 months from diagnosis.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Pollack IF, Jakacki RI, Butterfield LH, Hamilton RL, Panigrahy A, Normolle DP, et al. Immune responses and outcome after vaccination with glioma-associated antigen peptides and poly-ICLC in a pilot study for pediatric recurrent low-grade gliomas. Neuro Oncol. 2016;18(8):1157–68. https://doi.org/10.1093/neuonc/now026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Vik-Mo EO, Nyakas M, Mikkelsen BV, Moe MC, Due-Tonnesen P, Suso EM, et al. Therapeutic vaccination against autologous cancer stem cells with mRNA-transfected dendritic cells in patients with glioblastoma. Cancer Immunol Immunother. 2013;62(9):1499–509. https://doi.org/10.1007/s00262-013-1453-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Olin MR, Low W, McKenna DH, Haines SJ, Dahlheimer T, Nascene D, et al. Vaccination with dendritic cells loaded with allogeneic brain tumor cells for recurrent malignant brain tumors induces a CD4(+)IL17(+) response. J Immunother Cancer. 2014;2:4. https://doi.org/10.1186/2051-1426-2-4.

    Article  PubMed  PubMed Central  Google Scholar 

  23. •• Mitchell DA, Batich KA, Gunn MD, Huang MN, Sanchez-Perez L, Nair SK, et al. Tetanus toxoid and CCL3 improve dendritic cell vaccines in mice and glioblastoma patients. Nature. 2015a;519(7543):366–9. https://doi.org/10.1038/nature14320 This article describes the results of clinical studies in glioblastoma patients which show that the immune and anti-tumor responses to dendritic cell vaccination are increased by pre-conditioning the vaccination site with a potent recall antigen such as tetanus/diptheria toxoid.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Reap EA, Suryadevara CM, Batich KA, Sanchez-Perez L, Archer GE, Schmittling RJ et al. Dendritic cells enhance polyfunctionality of adoptively transferred t cells that target cytomegalovirus in glioblastoma. Cancer Res 2018;78(1):256–64. doi:https://doi.org/10.1158/0008-5472.can-17-0469.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Brown CE, Alizadeh D, Starr R, Weng L, Wagner JR, Naranjo A, et al. Regression of glioblastoma after chimeric antigen receptor T-cell therapy. N Engl J Med. 2016b;375(26):2561–9. https://doi.org/10.1056/NEJMoa1610497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kong DS, Nam DH, Kang SH, Lee JW, Chang JH, Kim JH, et al. Phase III randomized trial of autologous cytokine-induced killer cell immunotherapy for newly diagnosed glioblastoma in Korea. Oncotarget. 2017;8(4):7003–13. https://doi.org/10.18632/oncotarget.12273.

    Article  PubMed  Google Scholar 

  27. Brown CE, Badie B, Barish ME, Weng L, Ostberg JR, Chang WC, et al. Bioactivity and safety of IL13Ralpha2-redirected chimeric antigen receptor CD8+ T cells in patients with recurrent glioblastoma. Clin Cancer Res. 2015;21(18):4062–72. https://doi.org/10.1158/1078-0432.ccr-15-0428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Thaci B, Brown CE, Binello E, Werbaneth K, Sampath P, Sengupta S. Significance of interleukin-13 receptor alpha 2-targeted glioblastoma therapy. Neuro Oncol. 2014;16(10):1304–12. https://doi.org/10.1093/neuonc/nou045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Schuessler A, Smith C, Beagley L, Boyle GM, Rehan S, Matthews K, et al. Autologous T cell therapy for cytomegalovirus as a consolidative treatment for recurrent glioblastoma. Cancer Res. 2014;74(13):3466–76. https://doi.org/10.1158/0008-5472.can-14-0296.

    Article  CAS  PubMed  Google Scholar 

  30. Ahmed N, Brawley V, Hegde M, Bielamowicz K, Kalra M, Landi D, et al. HER2-specific chimeric antigen receptor-modified virus-specific T cells for progressive glioblastoma: a Phase 1 dose-escalation trial. JAMA Oncol. 2017b;3(8):1094–101. https://doi.org/10.1001/jamaoncol.2017.0184.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Reardon DA, Groot JFD, Colman H, Jordan JT, Daras M, Clarke JL, et al. Safety of pembrolizumab in combination with bevacizumab in recurrent glioblastoma (rGBM). J Clin Oncol. 2016d;34(15_suppl):2010. https://doi.org/10.1200/JCO.2016.34.15_suppl.2010.

    Article  Google Scholar 

  32. Sahebjam S, Johnstone PA, Forsyth PAJ, Arrington J, Vrionis FD, Etame AB, et al. Safety and antitumor activity of hypofractionated stereotactic irradiation (HFSRT) with pembrolizumab (Pembro) and bevacizumab (Bev) in patients (pts) with recurrent high grade gliomas: preliminary results from phase I study. J Clin Oncol. 2016b;34(15_suppl):2041. https://doi.org/10.1200/JCO.2016.34.15_suppl.2041.

    Article  Google Scholar 

  33. Reardon DA, Sampson JH, Sahebjam S, Lim M, Baehring JM, Vlahovic G, et al. Safety and activity of nivolumab (nivo) monotherapy and nivo in combination with ipilimumab (ipi) in recurrent glioblastoma (GBM): updated results from checkmate-143. J Clin Oncol. 2016c;34(15_suppl):2014. https://doi.org/10.1200/JCO.2016.34.15_suppl.2014.

    Article  Google Scholar 

  34. Desjardins A, Gromeier M, Herndon JE, Beaubier N, Bolognesi DP, Friedman AH, et al. Recurrent glioblastoma treated with recombinant poliovirus. N Engl J Med. 2018;379(2):150–61. https://doi.org/10.1056/NEJMoa1716435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tejada S, Diez-Valle R, Dominguez PD, Patino-Garcia A, Gonzalez-Huarriz M, Fueyo J, et al. DNX-2401, an oncolytic virus, for the treatment of newly diagnosed diffuse intrinsic pontine gliomas: a case report. Front Oncol. 2018;8:61. https://doi.org/10.3389/fonc.2018.00061.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wheeler LA, Manzanera AG, Bell SD, Cavaliere R, McGregor JM, Grecula JC, et al. Phase II multicenter study of gene-mediated cytotoxic immunotherapy as adjuvant to surgical resection for newly diagnosed malignant glioma. Neuro Oncol. 2016;18(8):1137–45. https://doi.org/10.1093/neuonc/now002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ji N, Weng D, Liu C, Gu Z, Chen S, Guo Y, et al. Adenovirus-mediated delivery of herpes simplex virus thymidine kinase administration improves outcome of recurrent high-grade glioma. Oncotarget. 2016;7(4):4369–78. https://doi.org/10.18632/oncotarget.6737.

    Article  PubMed  Google Scholar 

  38. Markert JM, Razdan SN, Kuo HC, Cantor A, Knoll A, Karrasch M, et al. A phase 1 trial of oncolytic HSV-1, G207, given in combination with radiation for recurrent GBM demonstrates safety and radiographic responses. Mol Ther. 2014;22(5):1048–55. https://doi.org/10.1038/mt.2014.22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kicielinski KP, Chiocca EA, Yu JS, Gill GM, Coffey M, Markert JM. Phase 1 clinical trial of intratumoral reovirus infusion for the treatment of recurrent malignant gliomas in adults. Mol Ther. 2014;22(5):1056–62. https://doi.org/10.1038/mt.2014.21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Westphal M, Yla-Herttuala S, Martin J, Warnke P, Menei P, Eckland D, et al. Adenovirus-mediated gene therapy with sitimagene ceradenovec followed by intravenous ganciclovir for patients with operable high-grade glioma (ASPECT): a randomised, open-label, phase 3 trial. Lancet Oncol. 2013;14(9):823–33. https://doi.org/10.1016/s1470-2045(13)70274-2.

    Article  CAS  PubMed  Google Scholar 

  41. Weiss N, Miller F, Cazaubon S, Couraud PO. The blood-brain barrier in brain homeostasis and neurological diseases. Biochim Biophys Acta. 2009;1788(4):842–57. https://doi.org/10.1016/j.bbamem.2008.10.022.

    Article  CAS  PubMed  Google Scholar 

  42. Muldoon LL, Alvarez JI, Begley DJ, Boado RJ, del Zoppo GJ, Doolittle ND, et al. Immunologic privilege in the central nervous system and the blood–brain barrier. J Cereb Blood Flow Metab. 2013;33(1):13–21. https://doi.org/10.1038/jcbfm.2012.153.

    Article  CAS  PubMed  Google Scholar 

  43. Miyauchi JT, Tsirka SE. Advances in immunotherapeutic research for glioma therapy. J Neurol. 2018;265(4):741–56. https://doi.org/10.1007/s00415-017-8695-5.

    Article  CAS  PubMed  Google Scholar 

  44. •• Weller M, Butowski N, Tran DD, Recht LD, Lim M, Hirte H, et al. Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII-expressing glioblastoma (ACT IV): a randomised, double-blind, international phase 3 trial. Lancet Oncol. 2017a;18(10):1373–85. https://doi.org/10.1016/S1470-2045(17)30517-X This article reports the results of the most comprehensive study of patients with EGFRvIII-expressing glioblastoma done so far. This study did not show a survival benefit for patients with EGFRvIII-positive glioblastoma who received rindopepimut, a vaccine targeting the EGFR deletion mutation EGFRvIII, with temozolomide compared to patients who received a control and highlights the need for combinatinatorial approaches in order to show efficacy of immunotherapy in glioblastoma.

    Article  CAS  PubMed  Google Scholar 

  45. Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. 2010;17(1):98–110. doi:https://doi.org/10.1016/j.ccr.2009.12.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sampson JH, Heimberger AB, Archer GE, Aldape KD, Friedman AH, Friedman HS, et al. Immunologic escape after prolonged progression-free survival with epidermal growth factor receptor variant III peptide vaccination in patients with newly diagnosed glioblastoma. J Clin Oncol. 2010;28(31):4722–9. https://doi.org/10.1200/JCO.2010.28.6963.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Srivastava PK, Callahan MK, Mauri MM. Treating human cancers with heat shock protein-peptide complexes: the road ahead. Expert Opin Biol Ther. 2009;9(2):179–86. https://doi.org/10.1517/14712590802633918.

    Article  CAS  PubMed  Google Scholar 

  48. Binder RJ, Srivastava PK. Essential role of CD91 in re-presentation of gp96-chaperoned peptides. Proc Natl Acad Sci U S A. 2004;101(16):6128–33. https://doi.org/10.1073/pnas.0308180101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wood CG, Mulders P. Vitespen: a preclinical and clinical review. Future Oncol. 2009;5(6):763–74. https://doi.org/10.2217/fon.09.46.

    Article  CAS  PubMed  Google Scholar 

  50. Ji N, Zhang Y, Liu Y, Xie J, Wang Y, Hao S, et al. Heat shock protein peptide complex-96 vaccination for newly diagnosed glioblastoma: a phase I, single-arm trial. JCI Insight. 2018;3(10). https://doi.org/10.1172/jci.insight.99145.

  51. Wood C, Srivastava P, Bukowski R, Lacombe L, Gorelov AI, Gorelov S et al. An adjuvant autologous therapeutic vaccine (HSPPC-96; vitespen) versus observation alone for patients at high risk of recurrence after nephrectomy for renal cell carcinoma: a multicentre, open-label, randomised phase III trial. Lancet 2008;372(9633):145–54. doi:https://doi.org/10.1016/S0140-6736(08)60697-2.

    Article  CAS  Google Scholar 

  52. Kwek SS, Lewis J, Zhang L, Weinberg V, Greaney SK, Harzstark AL et al. Preexisting levels of CD4 T cells expressing PD-1 are related to overall survival in prostate cancer patients treated with ipilimumab. Cancer Immunol Res 2015;3(9):1008–16. doi:https://doi.org/10.1158/2326-6066.CIR-14-0227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jinushi M, Nakazaki Y, Dougan M, Carrasco DR, Mihm M, Dranoff G. MFG-E8-mediated uptake of apoptotic cells by APCs links the pro- and antiinflammatory activities of GM-CSF. J Clin Invest. 2007;117(7):1902–13. https://doi.org/10.1172/JCI30966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Berd D, Sato T, Maguire HC, Kairys J, Mastrangelo MJ. Immunopharmacologic analysis of an autologous, hapten-modified human melanoma vaccine. J Clin Oncol. 2004;22(3):403–15. https://doi.org/10.1200/JCO.2004.06.043.

    Article  CAS  PubMed  Google Scholar 

  55. Hsueh EC, Morton DL. Antigen-based immunotherapy of melanoma: canvaxin therapeutic polyvalent cancer vaccine. Semin Cancer Biol. 2003;13(6):401–7. https://doi.org/10.1016/j.semcancer.2003.09.003.

    Article  CAS  PubMed  Google Scholar 

  56. Sosman JA, Sondak VK. Melacine: an allogeneic melanoma tumor cell lysate vaccine. Expert Rev Vaccines. 2003;2(3):353–68. https://doi.org/10.1586/14760584.2.3.353.

    Article  CAS  PubMed  Google Scholar 

  57. Liau LM, Ashkan K, Tran DD, Campian JL, Trusheim JE, Cobbs CS, et al. First results on survival from a large Phase 3 clinical trial of an autologous dendritic cell vaccine in newly diagnosed glioblastoma. J Transl Med. 2018;16(1):142. https://doi.org/10.1186/s12967-018-1507-6.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Prins RM, Soto H, Konkankit V, Odesa SK, Eskin A, Yong WH, et al. Gene expression profile correlates with T-cell infiltration and relative survival in glioblastoma patients vaccinated with dendritic cell immunotherapy. Clin Cancer Res. 2011;17(6):1603–15. https://doi.org/10.1158/1078-0432.ccr-10-2563.

    Article  CAS  PubMed  Google Scholar 

  59. Tamura K, Aoyagi M, Wakimoto H, Ando N, Nariai T, Yamamoto M, et al. Accumulation of CD133-positive glioma cells after high-dose irradiation by Gamma Knife surgery plus external beam radiation. J Neurosurg. 2010;113(2):310–8. https://doi.org/10.3171/2010.2.jns091607.

    Article  PubMed  Google Scholar 

  60. Liu G, Yuan X, Zeng Z, Tunici P, Ng H, Abdulkadir IR, et al. Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer. 2006;5:67. https://doi.org/10.1186/1476-4598-5-67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Pallini R, Ricci-Vitiani L, Montano N, Mollinari C, Biffoni M, Cenci T, et al. Expression of the stem cell marker CD133 in recurrent glioblastoma and its value for prognosis. Cancer. 2011;117(1):162–74. https://doi.org/10.1002/cncr.25581.

    Article  PubMed  Google Scholar 

  62. Dziurzynski K, Chang SM, Heimberger AB, Kalejta RF, McGregor Dallas SR, Smit M et al. Consensus on the role of human cytomegalovirus in glioblastoma. Neuro Oncol. 2012;14(3):246–55. doi:https://doi.org/10.1093/neuonc/nor227.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Ranganathan P, Clark PA, Kuo JS, Salamat MS, Kalejta RF. Significant association of multiple human cytomegalovirus genomic loci with glioblastoma multiforme samples. J Virol. 2012;86(2):854–64. https://doi.org/10.1128/jvi.06097-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Mitchell DA, Xie W, Schmittling R, Learn C, Friedman A, RE ML, et al. Sensitive detection of human cytomegalovirus in tumors and peripheral blood of patients diagnosed with glioblastoma. Neuro Oncol. 2008;10(1):10–8. https://doi.org/10.1215/15228517-2007-035.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Cobbs CS, Harkins L, Samanta M, Gillespie GY, Bharara S, King PH, et al. Human cytomegalovirus infection and expression in human malignant glioma. Cancer Res. 2002;62(12):3347–50.

    CAS  PubMed  Google Scholar 

  66. Mitchell DA, Sayour EJ, Reap E, Schmittling R, De Leon G, Norberg P, et al. Severe adverse immunologic reaction in a patient with glioblastoma receiving autologous dendritic cell vaccines combined with GM-CSF and dose-intensified temozolomide. Cancer Immunol Res. 2015c;3(4):320–5. https://doi.org/10.1158/2326-6066.cir-14-0100.

    Article  CAS  PubMed  Google Scholar 

  67. Mitchell DA, Cui X, Schmittling RJ, Sanchez-Perez L, Snyder DJ, Congdon KL, et al. Monoclonal antibody blockade of IL-2 receptor alpha during lymphopenia selectively depletes regulatory T cells in mice and humans. Blood. 2011;118(11):3003–12. https://doi.org/10.1182/blood-2011-02-334,565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sampson JH, Schmittling RJ, Archer GE, Congdon KL, Nair SK, Reap EA, et al. A pilot study of IL-2Rα blockade during lymphopenia depletes regulatory T-cells and correlates with enhanced immunity in patients with glioblastoma. PLoS One. 2012;7(2):e31046. https://doi.org/10.1371/journal.pone.0031046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Fecci PE, Sweeney AE, Grossi PM, Nair SK, Learn CA, Mitchell DA, et al. Systemic anti-CD25 monoclonal antibody administration safely enhances immunity in murine glioma without eliminating regulatory T cells. Clin Cancer Res. 2006;12(14 Pt 1):4294–305. https://doi.org/10.1158/1078-0432.ccr-06-0053.

    Article  CAS  PubMed  Google Scholar 

  70. Kohm AP, McMahon JS, Podojil JR, Begolka WS, DeGutes M, Kasprowicz DJ, et al. Cutting edge: anti-CD25 monoclonal antibody injection results in the functional inactivation, not depletion, of CD4+CD25+ T regulatory cells. J Immunol. 2006;176(6):3301–5.

    Article  CAS  PubMed  Google Scholar 

  71. •• Wherry EJ, Kurachi M. Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol. 2015a;15(8):486–99. https://doi.org/10.1038/nri3862 This comprehensive review describes recent advances which have provided a better molecular understanding of the deterioration of T cell function, or exhaustion, and revealed new therapeutic targets for persisting infections and cancer.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bedrosian I, Mick R, Xu S, Nisenbaum H, Faries M, Zhang P, et al. Intranodal administration of peptide-pulsed mature dendritic cell vaccines results in superior CD8+ T-cell function in melanoma patients. J Clin Oncol. 2003;21(20):3826–35. https://doi.org/10.1200/jco.2003.04.042.

    Article  CAS  PubMed  Google Scholar 

  73. Artene SA, Turcu-Stiolica A, Ciurea ME, Folcuti C, Tataranu LG, Alexandru O, et al. Comparative effect of immunotherapy and standard therapy in patients with high grade glioma: a meta-analysis of published clinical trials. Sci Rep. 2018;8(1):11800. https://doi.org/10.1038/s41598-018-30,296-x.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Ehtesham M, Kabos P, Gutierrez MA, Samoto K, Black KL, Yu JS. Intratumoral dendritic cell vaccination elicits potent tumoricidal immunity against malignant glioma in rats. J Immunother. 2003;26(2):107–16.

    Article  PubMed  Google Scholar 

  75. Sampson JH, Mitchell DA. Vaccination strategies for neuro-oncology. Neuro Oncol. 2015;17(Suppl 7):vii15–25. https://doi.org/10.1093/neuonc/nov159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Maxwell R, Luksik AS, Garzon-Muvdi T, Lim M. The potential of cellular- and viral-based immunotherapies for malignant glioma-dendritic cell vaccines, adoptive cell transfer, and oncolytic viruses. Curr Neurol Neurosci Rep. 2017;17(6):50. https://doi.org/10.1007/s11910-017-0754-x.

    Article  PubMed  Google Scholar 

  77. Berghoff AS, Kiesel B, Widhalm G, Rajky O, Ricken G, Wohrer A, et al. Programmed death ligand 1 expression and tumor-infiltrating lymphocytes in glioblastoma. Neuro Oncol. 2015;17(8):1064–75. https://doi.org/10.1093/neuonc/nou307.

    Article  CAS  PubMed  Google Scholar 

  78. Wherry EJ, Kurachi M. Molecular and cellular insights into T cell exhaustion. Nat Rev Immunol. 2015b;15(8):486–99. https://doi.org/10.1038/nri3862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Quattrocchi KB, Miller CH, Cush S, Bernard SA, Dull ST, Smith M, et al. Pilot study of local autologous tumor infiltrating lymphocytes for the treatment of recurrent malignant gliomas. J Neurooncol. 1999;45(2):141–57.

    Article  CAS  PubMed  Google Scholar 

  80. Nair SK, De Leon G, Boczkowski D, Schmittling R, Xie W, Staats J et al. Recognition and killing of autologous, primary glioblastoma tumor cells by human cytomegalovirus pp65-specific cytotoxic T cells. Clin Cancer Res. 2014a;20(10):2684–94. doi:https://doi.org/10.1158/1078-0432.CCR-13-3268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Nair SK, Sampson JH, Mitchell DA. Immunological targeting of cytomegalovirus for glioblastoma therapy. Oncoimmunology. 2014b;3:e29289. https://doi.org/10.4161/onci.29289.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Nair DLG, Boczkowski D, Schmittling R, Xie W, Archer G, et al. Targeting cytomegalovirus (CMV) antigens for GBM immunotherapy. J Immunother Cancer. 2013;1(Suppl 1):P270. https://doi.org/10.1186/2051-1426-1-s1-p270.

    Article  PubMed Central  Google Scholar 

  83. Flores C, Pham C, Snyder D, Yang S, Sanchez-Perez L, Sayour E, et al. Novel role of hematopoietic stem cells in immunologic rejection of malignant gliomas. Oncoimmunology. 2015;4(3):e994374. https://doi.org/10.4161/2162402X.2014.994374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Wildes TJ, Grippin A, Dyson KA, Wummer BM, Damiani DJ, Abraham RS, et al. Cross-talk between T cells and hematopoietic stem cells during adoptive cellular therapy for malignant glioma. Clin Cancer Res. 2018. https://doi.org/10.1158/1078-0432.CCR-17-3061.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Morgan RA, Dudley ME, Wunderlich JR, Hughes MS, Yang JC, Sherry RM, et al. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science. 2006;314(5796):126–9. https://doi.org/10.1126/science.1129003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. • Chheda ZS, Kohanbash G, Okada K, Jahan N, Sidney J, Pecoraro M, et al. Novel and shared neoantigen derived from histone 3 variant H3.3K27M mutation for glioma T cell therapy. J Exp Med. 2018;215(1):141–57. https://doi.org/10.1084/jem.20171046 This article describes the identification of a novel HLA-A*02:01-restricted neoantigen epitope encompassing the H3.3K27M mutation present in the majority of diffuse midline glioma in children and young adults. Furthermore, the study highlights the cloning of a high-affinity T cell receptor that specifically recognizes the H3.3K27M epitope endogenously expressed by glioma cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Johnson LA, Morgan RA, Dudley ME, Cassard L, Yang JC, Hughes MS, et al. Gene therapy with human and mouse T-cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen. Blood. 2009;114(3):535–46. https://doi.org/10.1182/blood-2009-03-211,714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Morgan RA, Chinnasamy N, Abate-Daga D, Gros A, Robbins PF, Zheng Z, et al. Cancer regression and neurological toxicity following anti-MAGE-A3 TCR gene therapy. J Immunother. 2013;36(2):133–51. https://doi.org/10.1097/CJI.0b013e3182829903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Linette GP, Stadtmauer EA, Maus MV, Rapoport AP, Levine BL, Emery L, et al. Cardiovascular toxicity and titin cross-reactivity of affinity-enhanced T cells in myeloma and melanoma. Blood. 2013;122(6):863–71. https://doi.org/10.1182/blood-2013-03-490,565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Robbins PF, Morgan RA, Feldman SA, Yang JC, Sherry RM, Dudley ME et al. Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J Clin Oncol 2011;29(7):917–24. doi:https://doi.org/10.1200/JCO.2010.32.2537.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Chheda ZS, Kohanbash G, Okada K, Jahan N, Sidney J, Pecoraro M et al. Novel and shared neoantigen derived from histone 3 variant H3.3K27M mutation for glioma T cell therapy. J Exp Med. 2018;215(1):141–57. doi:https://doi.org/10.1084/jem.20171046.

    Article  PubMed  Google Scholar 

  92. •• Brown CE, Alizadeh D, Starr R, Weng L, Wagner JR, Naranjo A, et al. Regression of glioblastoma after chimeric antigen receptor T-cell therapy. N Engl J Med. 2016a;375(26):2561–9. https://doi.org/10.1056/NEJMoa1610497 This is the first case report indicating the feasibility of using chimeric antigen receptor T cells (targeting the IL-13α2 receptor), in patients with recurrent glioblastoma. This approach had a potent effect, causing the tumors to be reduced in volume by 77–100%, and this response was sustained for 7.5 months. However, recurrence eventually occurred, and preliminary results suggested that these tumors had reduced IL-13α2 expression.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Debinski W, Gibo DM, Hulet SW, Connor JR, Gillespie GY. Receptor for interleukin 13 is a marker and therapeutic target for human high-grade gliomas. Clin Cancer Res. 1999;5(5):985–90.

    CAS  PubMed  Google Scholar 

  94. Wykosky J, Gibo DM, Stanton C, Debinski W. Interleukin-13 receptor alpha 2, EphA2, and Fos-related antigen 1 as molecular denominators of high-grade astrocytomas and specific targets for combinatorial therapy. Clin Cancer Res. 2008;14(1):199–208. https://doi.org/10.1158/1078-0432.ccr-07-1990.

    Article  CAS  PubMed  Google Scholar 

  95. Curtis SA, Cohen JV, Kluger HM. Evolving immunotherapy approaches for renal cell carcinoma. Curr Oncol Rep. 2016;18(9):57. https://doi.org/10.1007/s11912-016-0542-9.

    Article  CAS  PubMed  Google Scholar 

  96. Khanna P, Blais N, Gaudreau PO, Corrales-Rodriguez L. Immunotherapy comes of age in lung cancer. Clin Lung Cancer. 2017;18(1):13–22. https://doi.org/10.1016/j.cllc.2016.06.006.

    Article  CAS  PubMed  Google Scholar 

  97. •• Goldberg SB, Gettinger SN, Mahajan A, Chiang AC, Herbst RS, Sznol M, et al. Pembrolizumab for patients with melanoma or non-small-cell lung cancer and untreated brain metastases: early analysis of a non-randomised, open-label, phase 2 trial. Lancet Oncol. 2016a;17(7):976–83. https://doi.org/10.1016/s1470-2045(16)30053-5 This articles describes the results of a single-center phase II trial showing, for the first time, that PD-1 inhibitor pembrolizumab is active in untreated or progressive brain metastases in melanoma and non-small cell lung cancer, with an acceptable safety profile. These findings suggests that systemic immunotherapy might be effective for patients with untreated or progressive brain metastases and that pembrolizumab might be tested in the treatment of primary brain tumors.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. •• Rosell R, Karachaliou N. Trends in immunotherapy for brain metastases. Lancet Oncol. 2016;17(7):859–60. https://doi.org/10.1016/S1470-2045(16)30091-2 This article summarizes the results of the study by Goldberg and colleagues, in which pembrolizumab was used as a treatment for brain metastases in patients with melanoma and non-small-cell lung cancer, highlighting that treatment with anti-PD-1 antibodies is a promising new immunotherapeutic approach.

    Article  PubMed  Google Scholar 

  99. Schoppy DW, Sunwoo JB. Immunotherapy for head and neck squamous cell carcinoma. Hematol Oncol Clin North Am. 2015;29(6):1033–43. https://doi.org/10.1016/j.hoc.2015.07.009.

    Article  PubMed  Google Scholar 

  100. Raju S, Joseph R, Sehgal S. Review of checkpoint immunotherapy for the management of non-small cell lung cancer. Immunotargets Ther. 2018;7:63–75. https://doi.org/10.2147/ITT.S125070.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Badami S, Upadhaya S, Velagapudi RK, Mikkilineni P, Kunwor R, Al Hadidi S, et al. Clinical and molecular characteristics associated with survival in advanced melanoma treated with checkpoint inhibitors. J Oncol. 2018;2018:6279871. https://doi.org/10.1155/2018/6279871.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Rijnders M, de Wit R, Boormans JL, Lolkema MPJ, van der Veldt AAM. Systematic review of immune checkpoint inhibition in urological cancers. Eur Urol. 2017;72(3):411–23. https://doi.org/10.1016/j.eururo.2017.06.012.

    Article  CAS  PubMed  Google Scholar 

  103. • Reardon DA, Groot JFD, Colman H, Jordan JT, Daras M, Clarke JL, et al. Safety of pembrolizumab in combination with bevacizumab in recurrent glioblastoma (rGBM). J Clin Oncol. 2016a;34(15_suppl):2010. https://doi.org/10.1200/JCO.2016.34.15_suppl.2010 This is the first study to report the safety/tolerability of combining PD-1 inhibition with pembrolizumab and VEGF blockade using bevacizumab in a multicenter, randomized phase 2 clinical trial in patients with glioblastoma.

    Article  Google Scholar 

  104. • Sahebjam S, Johnstone PA, Forsyth PAJ, Arrington J, Vrionis FD, Etame AB, et al. Safety and antitumor activity of hypofractionated stereotactic irradiation (HFSRT) with pembrolizumab (Pembro) and bevacizumab (Bev) in patients (pts) with recurrent high grade gliomas: preliminary results from phase I study. J Clin Oncol. 2016a;34(15_suppl):2041. https://doi.org/10.1200/JCO.2016.34.15_suppl.2041 This article reports preliminary data of a phase 1 clinical trial demonstrating acceptable toxicity when combining of HFSRT with Pembro and Bev in six pts with recurrent glioblastoma as well as durable disease control in three pts.

    Article  Google Scholar 

  105. Goldberg SB, Gettinger SN, Mahajan A, Chiang AC, Herbst RS, Sznol M, et al. Pembrolizumab for patients with melanoma or non-small-cell lung cancer and untreated brain metastases: early analysis of a non-randomised, open-label, phase 2 trial. Lancet Oncol. 2016b;17(7):976–83. https://doi.org/10.1016/s1470-2045(16)30053-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. •• Reardon DA, Sampson JH, Sahebjam S, Lim M, Baehring JM, Vlahovic G, et al. Safety and activity of nivolumab (nivo) monotherapy and nivo in combination with ipilimumab (ipi) in recurrent glioblastoma (GBM): updated results from checkmate-143. J Clin Oncol. 2016b;34(15_suppl):2014. https://doi.org/10.1200/JCO.2016.34.15_suppl.2014 This article reports updated results from the first large randomized phase 3 clinical trial of PD pathway inhibition in the setting of GBM, including a comparison of nivo, an anti-programmed cell death-1 (PD-1) monoclonal antibody, and the anti-CTLA-4 antibody ipi in the treatment of recurrent disease.

    Article  Google Scholar 

  107. Margolin K, Ernstoff MS, Hamid O, Lawrence D, McDermott D, Puzanov I, et al. Ipilimumab in patients with melanoma and brain metastases: an open-label, phase 2 trial. Lancet Oncol. 2012;13(5):459–65. https://doi.org/10.1016/S1470-2045(12)70090-6.

    Article  CAS  PubMed  Google Scholar 

  108. Di Giacomo AM, Ascierto PA, Queirolo P, Pilla L, Ridolfi R, Santinami M, et al. Three-year follow-up of advanced melanoma patients who received ipilimumab plus fotemustine in the Italian Network for Tumor Biotherapy (NIBIT)-M1 phase II study. Ann Oncol. 2015;26(4):798–803. https://doi.org/10.1093/annonc/mdu577.

    Article  PubMed  Google Scholar 

  109. Nduom EK, Wei J, Yaghi NK, Huang N, Kong LY, Gabrusiewicz K, et al. PD-L1 expression and prognostic impact in glioblastoma. Neuro Oncol. 2016;18(2):195–205. https://doi.org/10.1093/neuonc/nov172.

    Article  CAS  PubMed  Google Scholar 

  110. Mu L, Long Y, Yang C, Jin L, Tao H, Ge H, et al. The IDH1 mutation-induced oncometabolite, 2-hydroxyglutarate, may affect DNA methylation and expression of PD-L1 in gliomas. Front Mol Neurosci. 2018;11:82. https://doi.org/10.3389/fnmol.2018.00082.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duane A. Mitchell MD, PhD.

Ethics declarations

Conflict of Interest

Lan B. Hoang-Minh declares that she has no conflict of interest.

Duane A. Mitchell holds patented technologies that have been licensed or have exclusive options to license to Celldex Therapeutics, Annias, Immunomic Therapeutics, and iOncologi; receives research funding from Immunomic Therapeutics; serves as an advisor/consultant to Bristol-Myers Squibb, Tocagen, and Oncorus; and is co-founder of iOncologi, Inc., an immuno-oncology biotechnology company.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Neuro-oncology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoang-Minh, L.B., Mitchell, D.A. Immunotherapy for Brain Tumors. Curr. Treat. Options in Oncol. 19, 60 (2018). https://doi.org/10.1007/s11864-018-0576-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11864-018-0576-3

Keywords

Navigation