Skip to main content

Advertisement

Log in

Bio-hydrogen production from a marine brown algae and its bacterial diversity

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The aim of this study was to determine how bio-hydrogen production was related to the composition of the bacterial community in a dark fermentation fed with marine brown algae (Laminaria japonica). The bacterial diversity was ascertained by 16S rDNA PCR-sequencing. A total of 444 mL of bio-hydrogen was produced from 10 g/L of dry algae in a 100 mL of culture fluid for 62 h. The pH varied from 8.74 to 7.05. Active bio-hydrogen production was observed from 24 to 48 h, and maximum bio-hydrogen production was 106 mL over 1 L gas. The bacterial community of the activated sludge consisted of 6 phyla, where H2 producing and consuming bacteria coexisted. The only detectable bacterial phylum after bio-hydrogen generation with heat-treated (65 °C, 20 min) seeding was Firmicutes. Clostridium and Bacillus species constituted 54% and 46%, respectively, of the bacterial mixture and the most abundant species was Clostridium beijierinckii (34%). These results may provide a better understanding of how different biohydrogen communities affect hydrogen production and aid in the optimization of bio-hydrogen production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. N. Veziroglu and F. Barbir, Int. J. Hydrogen Energy, 17, 391 (1992).

    Article  CAS  Google Scholar 

  2. P. L. Bicelli, Int. J. Hydrogen Energy, 11, 555 (1986).

    Article  Google Scholar 

  3. D. Dasa and N. Veziroglu, Int. J. Hydrogen Energy, 33, 6046 (2008).

    Article  Google Scholar 

  4. C.H. Christensen, B. Jørgensen, J. Rass-Hansen, K. Egeblad, R. Madsen, S.K. Klitgaard, S. M. Hansen, M.R. Hansen, H.C. Andersen and A. Riisager, Angew. Chem. Int. Ed., 45, 4648 (2006).

    Article  CAS  Google Scholar 

  5. B. G. Park, Korean J. Chem. Eng., 21, 782 (2004).

    Article  CAS  Google Scholar 

  6. A.C. Hansen, Q. Zhang and P.W. L. Lyne, Bioresour. Technol., 96, 277 (2005).

    Article  CAS  Google Scholar 

  7. V. C. Kalia and H. J. Purohit, J. Ind. Microbiol. Biotechnol., 35, 403 (2008).

    Article  CAS  Google Scholar 

  8. J. S. Rocha, M. J. Barbosa and R.H. Wijffels, in Biohydrogen II-An approach to environmentally acceptable technology, J. Miyaki, T. Matsunaga and A. San Pietro Eds., Pergamon Press, London (2001).

    Google Scholar 

  9. R. Benemann, in Biohydrogen, O. R. Zaborsky Ed., Plenum Press, New York (1998).

    Google Scholar 

  10. J. Wang and W. Wan, Int. J. Hydrogen Energy, 34, 799 (2009).

    Article  CAS  Google Scholar 

  11. J.-I. Park, J. Lee, S. J. Sim and J.-H. Lee, Biothchnol. Bioproc. Eng., in press (2009).

  12. A. Jensen, Hydrobiologia, 260/261, 15 (1993).

    Article  Google Scholar 

  13. C. K. Tseng, J. Appl. Phycol., 13, 375 (2001).

    Article  Google Scholar 

  14. D. L. Klass, Chem. Tech., 3, 161 (1974).

    Google Scholar 

  15. J. J. Lay, Biotechnol. Bioeng., 68, 269 (2000).

    Article  CAS  Google Scholar 

  16. D.-G. Lee, J.-H. Lee and S.-J. Kim, World J. Microbiol. Biotechnol., 21, 155 (2005).

    Article  CAS  Google Scholar 

  17. M. Wagner, R. Amann, H. Lemmer and K. H. Schleifer, Appl. Environ. Microbiol., 59, 1520 (1993).

    CAS  Google Scholar 

  18. S. J. Park, J.C. Yoon, K. S. Shin, E.H. Kim, S. Yim, Y. J. Cho, G. M. Sung, D.-G. Lee, S. B. Kim, D. U. Lee, S. H. Woo and B. Koopman, J. Microbiol., 45, 113 (2007).

    CAS  Google Scholar 

  19. L. S. Cleseri and APHA, Standard methods for examination of water and wastewater, 18th ed., Environmental Federation, Washington DC (1992).

    Google Scholar 

  20. P. Yang, R. Zhang, J.A. McGarvey and R. John, Int. J. Hydrogen Energy, 32, 4761 (2007).

    Article  CAS  Google Scholar 

  21. K. Nath and D. Das. Appl. Microbiol. Biotechnol., 68, 533 (2005).

    Article  CAS  Google Scholar 

  22. D. Sivaramakrishna, D. Sreekanth, V. Himabindu and Y. Anjaneyulu, Renew. Energy, 34, 937 (2009).

    Article  CAS  Google Scholar 

  23. H. H. P. Fang and H. Liu, Biores. Technol., 82, 87 (2002).

    Article  CAS  Google Scholar 

  24. Y. Ueno, S. Otauka and M. Morimoto, J. Ferment. Bioeng., 82, 194 (1996).

    Article  CAS  Google Scholar 

  25. E. Pelletier, A. Kreimeyer, S. Bocs, Z. Rouy, G. Gyapay, R. Chouari, D. Rivière, A. Ganesan, P. Daegelen, A. Sghir, G. N. Cohen, C. Médigue, J. Weissenbach and D. Le Paslier, J. Bacteriol., 190, 2572 (2008).

    Article  CAS  Google Scholar 

  26. X. Maymo-Gatell, Y. Chien, J. M. Gossett and S. H. Zinder, Science, 276, 1568 (1997).

    Article  CAS  Google Scholar 

  27. T. J. Penner, T. Siddique and J. M. Foght, http://www.ncbi.nlm.nih. gov/nuccore/170180273, Unpublished.

  28. D. Z. Sousa, J. I. Alves, M.M. Alves, H. Smidt and A. J. Stams, Environ. Microbiol., 11, 68 (2009).

    Article  CAS  Google Scholar 

  29. J. T. Kraemer and D. M. Bagley, Biotechnol. Lett., 29, 685 (2007).

    Article  CAS  Google Scholar 

  30. E. Stackebrandt and F.A. Rainey, in The clostridia: molecular biology and pathogenesis, J. Rood Ed., Academic Press, San Diego (1997).

    Google Scholar 

  31. W. J. Mitchell, in Clostridia: biotechnology and medical applications, H. Bahl and P. Durre Eds., Wiley-VCH, Weinheim (2001).

    Google Scholar 

  32. F. Taguchi, J.D. Chang, N. Mizukami, T. Saito-Taki, K. Hasegawa and M. Morimoto, Can. J. Microbiol., 39, 726 (1993).

    Article  CAS  Google Scholar 

  33. H. Zhanga, M. A. Bruns and B. E. Logana, Water Res., 40, 728 (2006).

    Article  Google Scholar 

  34. W.-M. Chen, Z.-J. Tseng, K.-S. Lee and J.-S. Chang, Int. J. Hydrogen Energy, 30, 1063 (2005).

    Article  CAS  Google Scholar 

  35. A. Singh, K.D. Pandey and R. S. Dubey, Int. J. Hydrogen Energy, 24, 693 (1999).

    Article  CAS  Google Scholar 

  36. H. McTavish, J. Biochem., 123, 644 (1998).

    CAS  Google Scholar 

  37. S. Porwal, T. Kumar, S. Lal, A. Rani, S. Kumar, S. Cheema, H. J. Purohit, R. Sharma, S. K. S. Patel and V. C. Kalia, Bioresour. Technol., 99, 5444 (2008).

    Article  CAS  Google Scholar 

  38. T.-Y. Jeong, G.-C. Cha, S. H. Yeom and S. S. Choi. J. Ind. Eng. Chem., 14, 333 (2008).

    CAS  Google Scholar 

  39. Y. You, N. Ren, A. Wang, F. Ma, L. Gao, Y. Peng and D. Lee, Int. J. Hydrogen Energy, 33, 3295 (2008).

    Article  CAS  Google Scholar 

  40. Y.-K. Oh, E.-H. Seol, E.Y. Lee and S. Park, Int. J. Hydrogen Energy, 27, 1373 (2002).

    Article  CAS  Google Scholar 

  41. R. Nandi and S. Sengupta, Crit. Rev. Microbiol., 24, 61 (1998).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Hwa Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, JH., Lee, DG., Park, JI. et al. Bio-hydrogen production from a marine brown algae and its bacterial diversity. Korean J. Chem. Eng. 27, 187–192 (2010). https://doi.org/10.1007/s11814-009-0300-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-009-0300-x

Key words

Navigation