Skip to main content
Log in

Projective Compactification of \(\mathbb {R}^{1,1}\) and Its Möbius Geometry

  • Published:
Complex Analysis and Operator Theory Aims and scope Submit manuscript

Abstract

We examine the semi-Riemannian manifold \(\mathbb {R}^{1,1}\), which is realized as the split complex plane, and its conformal compactification as an analogue of the complex plane and the Riemann sphere. We also consider conformal maps on the compactification and study some of their basic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Dirac, P.A.M.: Wave equations in conformal space. Ann. Math. 37, 429–442 (1936)

    Article  MathSciNet  Google Scholar 

  2. Yaglom, I.M.: A simple non-Euclidean geometry and its physical basis. Springer, New York (1979)

  3. Segal, I.E.: Mathematical cosmology and extragalactic astronomy, volume 68 of pure and applied mathematics. Academic Press [Harcourt Brace Jovanovich Publishers], New York (1976)

  4. Schottenloher, M.: A mathematical introduction to conformal field theory. Springer, Berlin (2008)

    MATH  Google Scholar 

  5. Brewer, S.: Projective cross-ratio on hypercomplex numbers. Adv. Appl. Clifford Algebr. 23(1), 1–14 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  6. DenHartigh, K., Flim, R.: Liouville theorems in the dual and double planes. Rose-Hulman Undergrad. Math. J. 12 (2011)

  7. Porteous, I.: Mathematical structure of Clifford algebras. In: Ablamowicz, R., Sobczyk, G. (eds.) Lectures on Clifford (Geometric) Algebras and Applications

  8. Deakin, M.A.B.: Functions of a dual or duo variable. Math. Mag. 31(4), 215–219 (1966)

    Article  MathSciNet  Google Scholar 

  9. Libine, M.: Hyperbolic cauchy integral formula for the split complex numbers, arXiv:0712.0375 (2007, submitted)

  10. Ahlfors, L.V.: Complex analysis: an introduction to the theory of analytic functions of one complex variable. McGraw-Hill, New York (1979)

    MATH  Google Scholar 

  11. Kisil, V.V.: Analysis in \({R}^{1,1}\) or the principal function theory. Complex Var. Theory Appl. 40(2), 93–118 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  12. Herranz, F. J., Santander, M.: Conformal compactification of spacetimes. J. Phys. A 35(31), 6619–6629 (2002)

    Google Scholar 

  13. Kisil, V.V.: Two-dimensional conformal models of space-time and their compactification. J. Math. Phys. 48(7), 1–8 (2007)

    Google Scholar 

  14. Kisil, V.V.: Geometry of Möbius transformations: elliptic, parabolic and hyperbolic actions of \(SL_2{R})\). Imperial College Press, London (2012). (Includes a live DVD)

    Book  Google Scholar 

  15. Mis, A.J., Keilman, J.: A Beckman–Quarles type theorem for linear fractional transformations of the extended double plane. Rose-Hulman Math J 12(2):116–135 (2012)

    Google Scholar 

  16. Horn, R.A.: Matrix analysis. Cambridge University Press, Cambridge (1985)

    Book  MATH  Google Scholar 

  17. Gwynne, E., Libine, M.: On a quaternionic analogue of the cross-ratio. Adv. Appl. Clifford Algebr. 22, 1041–1053 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John A. Emanuello.

Additional information

Communicated by Michael Shapiro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Emanuello, J.A., Nolder, C.A. Projective Compactification of \(\mathbb {R}^{1,1}\) and Its Möbius Geometry. Complex Anal. Oper. Theory 9, 329–354 (2015). https://doi.org/10.1007/s11785-014-0363-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11785-014-0363-5

Keywords

Mathematics Subject Classification (2010)

Navigation