Skip to main content
Log in

Microstructural Modification and Surface Hardness Improvement in Al-Mo Friction Stir Surface Composites

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Molybdenum-reinforced aluminum matrix surface composites have been fabricated using friction stir processing. The Mo reinforcement results in an increase in the hardness and a decrease in the grain size. The Mo particle size and its dependence on the tool rotational speed are important for fabrication of high-performance composites. However, the effect of the tool rotational speed on microstructure, particle size and distribution, and hardness is not known. Here, we present microstructural and microhardness analysis of Al-Mo surface composites for varying tool rotational speeds. Increase in tool rotational speed results in reduced particle size, better particle distribution, and reduced grain size. The surface hardness also increases with an increase in the tool rotational speed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Y. Mazaheri, A. Heidarpour, M.M. Jalilvand, and M. Roknian, Effect of Friction Stir Processing on the Microhardness, Wear and Corrosion Behavior of Al6061 and Al6061/SiO2 Nanocomposites, J. Mater. Eng. Perform., 2019, 28, p 4826–4837

    CAS  Google Scholar 

  2. D. Yadav and R. Bauri, Friction Stir Processing of Al-TiB2 In-Situ Composite: Effect on Particle Distribution, Microstructure and Properties, J. Mater. Eng. Perform., 2015, 24, p 1116–1124

    CAS  Google Scholar 

  3. A. Heidarpour, Fabrication and Characterization of A5083-WC-Al2O3 Surface Composite by Friction Stir Processing, J. Mater. Eng. Perform., 2019, 28, p 2747–2753

    CAS  Google Scholar 

  4. M.S. Khorrami, M. Kazeminezhad, Y. Miyashita, and A.H. Kokabi, The Correlation of Stir Zone Texture Development with Base Metal Texture and Tool-Induced Deformation in Friction Stir Processing of Severely Deformed Aluminum, Metall. Mater. Trans. A, 2017, 48A, p 188–197

    Google Scholar 

  5. M. Sarkari Khorrami, S. Samadi, Z. Janghorban, and M. Movahedi, In-Situ Aluminum Matrix Composite Produced by Friction Stir Processing Using FE Particles, Mater. Sci. Eng. A., 2015, 641, p 380–390

    CAS  Google Scholar 

  6. A. Almeida, F. Carvalho, P.A. Carvalho, and R. Vilar, Laser Developed Al-Mo Surface Alloys: Microstructure, Mechanical and Wear Behaviour, Surf. Coatings Technol., 2006, 200, p 4782–4790

    CAS  Google Scholar 

  7. R.S. Mishra, Z.Y. Ma, and I. Charit, Friction Stir Processing: A Novel Technique for Fabrication of Surface Composite, Mater. Sci. Eng. A, 2003, 341, p 307–310

    Google Scholar 

  8. V. Kumar, S. Jain, K.U. Yazar, and S. Muthukumaran, Development and Characterization of Al5083-CNTs/SiC Composites via Friction Stir Processing, J. Alloys Compd., 2019, 798, p 82–92

    Google Scholar 

  9. M. Balakrishnan, I. Dinaharan, R. Palanivel, and R. Sathiskumar, Effect of Friction Stir Processing on Microstructure and Tensile Behavior of AA6061/Al3Fe Cast Aluminum Matrix Composites, J. Alloys Compd., 2019, 785, p 531–541

    CAS  Google Scholar 

  10. Z.Y. Liu, B.L. Xiao, W.G. Wang, and Z.Y. Ma, Tensile Strength and Electrical Conductivity of Carbon Nanotube Reinforced Aluminum Matrix Composites Fabricated by Powder Metallurgy Combined with Friction Stir Processing, J. Mater. Sci. Technol., 2014, 30, p 649–655

    CAS  Google Scholar 

  11. N. Gangil, A.N. Siddiquee, and S. Maheshwari, Aluminium Based In Situ Composite Fabrication Through Friction Stir Processing: A Review, J. Alloys Compd., 2017, 715, p 91–104

    CAS  Google Scholar 

  12. A. Heidarzadeh, H. Pouraliakbar, S. Mahdavi, and M.R. Jandaghi, Ceramic Nanoparticles Addition in Pure Copper Plate: FSP Approach, Microstructure Evolution and Texture Study Using EBSD, Ceram. Int., 2018, 44, p 3128–3133

    CAS  Google Scholar 

  13. N. Nadammal, S.V. Kailas, J. Szpunar, and S. Suwas, Microstructure and Crystallographic Texture Evolution During the Friction-Stir Processing of a Precipitation-Hardenable Aluminum Alloy, JOM, 2015, 67, p 1014–1021

    CAS  Google Scholar 

  14. D.R. Ni, J.J. Wang, Z.N. Zhou, and Z.Y. Ma, Fabrication and Mechanical Properties of Bulk NiTip/Al Composites Prepared by Friction Stir Processing, J. Alloys Compd., 2014, 586, p 368–374

    CAS  Google Scholar 

  15. N. Kumar, R.S. Mishra, C.S. Huskamp, and K.K. Sankaran, The Effect of Friction Stir Processing on the Microstructure and Mechanical Properties of Equal Channel Angular Pressed 5052Al Alloy Sheet, J. Mater. Sci., 2011, 46, p 5527–5533

    CAS  Google Scholar 

  16. M.H. Shojaeefard, M. Akbari, and P. Asadi, The Effect of Reinforcement Type on the Microstructure, Mechanical Properties, and Wear Resistance of A356 Matrix Composites Produced by FSP, Int. J. Adv. Manuf. Technol., 2017, 91, p 1391–1407

    Google Scholar 

  17. A. Amirafshar and H. Pouraliakbar, Effect of Tool Pin Design on the Microstructural Evolutions and Tribological Characteristics of Friction Stir Processed Structural Steel, Meas. J. Int. Meas. Confed., 2015, 68, p 111–116

    Google Scholar 

  18. J.Q. Su, T.W. Nelson, and C.J. Sterling, Microstructure Evolution During FSW/FSP of High Strength Aluminum Alloys, Mater. Sci. Eng. A, 2005, 405, p 277–286

    Google Scholar 

  19. Z.Y. Zhang, R. Yang, Y. Li, G. Chen, Y.T. Zhao, and M.P. Liu, Microstructural Evolution and Mechanical Properties of Friction Stir Processed ZrB2/6061Al Nanocomposites, J. Alloys Compd., 2018, 762, p 312–318

    CAS  Google Scholar 

  20. I. Charit and R.S. Mishra, Effect of Friction Stir Processed Microstructure on Tensile Properties of an Al-Zn-Mg-Sc Alloy Upon Subsequent Aging Heat Treatment, J. Mater. Sci. Technol., 2017, 34, p 214–218

    Google Scholar 

  21. P. Cavaliere, Effect of Minor Sc and Zr Addition on the Mechanical Properties of Friction Stir Processed 2024 Aluminium Alloy, J. Mater. Sci., 2006, 41, p 4299–4302

    CAS  Google Scholar 

  22. D. Yadav and R. Bauri, Processing, Microstructure and Mechanical Properties of Nickel Particles Embedded Aluminium Matrix Composite, Mater. Sci. Eng. A, 2011, 528, p 1326–1333

    Google Scholar 

  23. G.K. Padhy, C.S. Wu, and S. Gao, Friction Stir Based Welding and Processing Technologies- Processes, Parameters, Microstructures and Applications: A Review, J. Mater. Sci. Technol., 2018, 34, p 1–38

    Google Scholar 

  24. Y. Jung, E. Stevens, B. Ding, S.D. Kim, S.K. Woo, and J.K. Lee, Microstructure and Electrical Conductivity in Shape and Size Controlled Molybdenum Particle Thick Film, J. Mater. Sci., 2013, 48, p 3760–3768

    CAS  Google Scholar 

  25. I.S. Lee, P.W. Kao, C.P. Chang, and N.J. Ho, Formation of Al-Mo Intermetallic Particle-Strengthened Aluminum Alloys by Friction Stir Processing, Intermetallics, 2013, 35, p 9–14

    CAS  Google Scholar 

  26. A. Arora, A. Astarita, L. Boccarusso, and V.P. Mahesh, Experimental Characterization of Metal Matrix Composite with Aluminium Matrix and Molybdenum Powders as Reinforcement, Procedia Eng., 2016, 167, p 245–251

    CAS  Google Scholar 

  27. V.P. Mahesh and A. Arora, Effect of Tool Shoulder Diameter on the Surface Hardness of Aluminum-Molybdenum Surface Composites Developed by Single and Double Groove Friction Stir Processing, Metall. Mater. Trans. A, 2019, 50, p 5373–5383

    CAS  Google Scholar 

  28. S. Selvakumar, I. Dinaharan, R. Palanivel, and B. Ganesh Babu, Characterization of Molybdenum Particles Reinforced Al6082 Aluminum Matrix Composites with Improved Ductility Produced Using Friction Stir Processing, Mater. Charact., 2017, 125, p 13–22

    CAS  Google Scholar 

  29. Z.Y. Ma, A.H. Feng, D.L. Chen, and J. Shen, Recent Advances in Friction Stir Welding/Processing of Aluminum Alloys: Microstructural Evolution and Mechanical Properties, Crit. Rev. Solid State Mater. Sci., 2018, 43, p 269–333

    CAS  Google Scholar 

  30. K. Yang, W. Li, C. Huang, X. Yang, and Y. Xu, Optimization of Cold-Sprayed AA2024/Al2O3 Metal Matrix Composites via Friction Stir Processing: Effect of Rotation Speeds, J. Mater. Sci. Technol., 2018, 34, p 2167–2177

    Google Scholar 

  31. M. Yang, C. Xu, and C. Wu, Fabrication of AA6061/Al2O3 Nano Ceramic Particle Reinforced Composite Coating by Using Friction Stir Processing, J. Mater. Sci., 2010, 45, p 4431–4438

    CAS  Google Scholar 

  32. A. Kurt, I. Uygur, and E. Cete, Surface Modification of Aluminium by Friction stir Processing, J. Mater. Process. Technol., 2011, 211, p 313–317

    CAS  Google Scholar 

  33. R.S. Mishra and Z.Y. Ma, Friction stir welding and processing, Mater. Sci. Eng., R, 2005, 50, p 1–78

    Google Scholar 

  34. A. Arora, A. De, and T. Debroy, Toward Optimum Friction Stir Welding Tool Shoulder Diameter, Scr. Mater., 2011, 64, p 9–12

    CAS  Google Scholar 

  35. P. Vijayavel and V. Balasubramanian, Effect of Pin Profile Volume Ratio on Microstructure and Tensile Properties of Friction Stir Processed Aluminum Based Metal Matrix Composites, J. Alloys Compd., 2017, 729, p 828–842

    CAS  Google Scholar 

  36. V. Sharma, U. Prakash, and B.V. Manoj Kumar, Surface Composites by Friction Stir Processing: A Review, J. Mater. Process. Technol., 2015, 224, p 117–134

    CAS  Google Scholar 

  37. A.S. Golezani, R.V. Barenji, A. Heidarzadeh, and H. Pouraliakbar, Elucidating of Tool Rotational Speed in Friction Stir Welding of 7020-T6 Aluminum Alloy, Int. J. Adv. Manuf. Technol., 2015, 81, p 1155–1164

    Google Scholar 

  38. H. Shirazi, S. Kheirandish, and H. Pouraliakbar, Employing Hooking and Effective Sheet Thickness to Achieve Optimum Failure Load in Lap Joints of Friction Stir Welded AA5456 Aluminum, Theor. Appl. Fract. Mech., 2020, 105, p 102423

    CAS  Google Scholar 

  39. S. Shahraki, S. Khorasani, R.A. Behnagh, Y. Fotouhi, and H. Bisadi, Producing of AA5083/ZrO2 Nanocomposite by Friction Stir Processing (FSP), Metall. Mater. Trans. B., 2013, 44B, p 1546–1553

    Google Scholar 

  40. S.R. Babu, S. Pavithran, M. Nithin, and B. Parameshwaran, Effect of Tool Shoulder Diameter During Friction Stir Processing of AZ31B Alloy Sheets of various Thicknesses, Procedia Eng., 2014, 97, p 800–809

    CAS  Google Scholar 

  41. S. Ji, Y. Jin, Y. Yue, L. Zhang, and Z. Lv, The Effect of Tool Geometry on Material Flow Behavior of Friction Stir Welding of Titanium Alloy, Eng. Rev., 2013, 33, p 107–113

    Google Scholar 

  42. S. Pandya, R.S. Mishra, and A. Arora, Channel Formation During Friction Stir Channeling Process—A Material Flow Study Using X-Ray Micro-Computed Tomography and Optical Microscopy, J. Manuf. Process., 2019, 41, p 48–55

    Google Scholar 

  43. T.U. Seidel and A.P. Reynolds, Visualization of the Material Flow in AA2195 Friction-Stir Welds Using a Marker Insert Technique, Metall. Mater. Trans. A, 2001, 32, p 2879–2884

    Google Scholar 

  44. H.B.M. Rajan, I. Dinaharan, S. Ramabalan, and E.T. Akinlabi, Influence of Friction Stir Processing on Microstructure and Properties of AA7075/TiB2 In Situ Composite, J. Alloys Compd., 2016, 657, p 250–260

    CAS  Google Scholar 

  45. D.R. Tobergte and S. Curtis, Recrystallisation and Related Annealing Phenomena, J. Chem. Inf. Model., 2013, 53, p 1689–1699

    Google Scholar 

  46. M. Azizieh, A.H. Kokabi, and P. Abachi, Effect of Rotational Speed and Probe Profile on Microstructure and Hardness of AZ31/Al2O3 Nanocomposites Fabricated by Friction Stir Processing, Mater. Des., 2011, 32, p 2034–2041

    CAS  Google Scholar 

  47. H. Okamoto and T.B. Massalski, Binary Alloy Phase Diagrams Requiring Further Studies, J. Phase Equilibria., 1994, 15, p 500–521

    CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Indian Institute of Technology Gandhinagar for permission to use the Central Instrumentation Facility. The authors also thank Board of Research in Nuclear Sciences (BRNS) for the financial support provided through Grant No: 57/14/05/2019-BRNS/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Arora.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahesh, V.P., Kumar, A. & Arora, A. Microstructural Modification and Surface Hardness Improvement in Al-Mo Friction Stir Surface Composites. J. of Materi Eng and Perform 29, 5147–5157 (2020). https://doi.org/10.1007/s11665-020-05018-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-05018-y

Keywords

Navigation