Skip to main content
Log in

A process model for friction stir welding of age hardening aluminum alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In the present investigation, a numerical three-dimensional (3-D) heat flow model for friction stir welding (FSW) has been developed, based on the method of finite differences. The algorithm, which is implemented in MATLAB 5.2, is provided with a separate module for calculation of the microstructure evolution and the resulting hardness distribution. The process model is validated by comparison with in-situ thermocouple measurements and experimental hardness profiles measured at specific time intervals after welding to unravel the strength recovery during natural aging. Furthermore, the grain structure within the plastically deformed region of the as-welded materials has been characterized by means of the electron backscattered diffraction (EBSD) technique in the scanning electron microscope (SEM). Some practical applications of the process model are described toward the end of the article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

A 0 :

material constant related to the potency of the heterogeneous nucleation sites in actual alloy (J mol−1)

a :

thermal diffusivity (m2 s−1)

C o :

total alloy content (wt pct)

C o m :

matrix solute content in stabilised base material (wt pct)

C p :

solute concentration within the particle (wt pct)

D 0 :

diffusion coefficient (m2 s−1)

d s :

subgrain diameter (m)

dx, dy, dz :

discretization parameters in x, y, and z directions (m)

f 0 :

initial volume fraction of precipitates in base material

f m :

maximum possible volume fraction of hardening precipitates that can form at absolute zero

HV max :

hardness in the temper condition (VPN)

HV min :

hardness in the fully reverted condition (VPN)

M :

interfacial torque (Nm)

N :

rotational speed (rot·s−1)

P :

pressure (Pa)

P(r) :

pressure distribution across the interface (Pa)

Q :

activation energy for diffusion (J mol−1)

Q d :

activation energy for diffusion of Mg in Al (J mol−1)

Q s :

activation energy for diffusion of the less mobile constitutive atom of the precipitates (J mol−1)

q 0 :

net power (W)

R :

tool radius (m)

r :

two-dimensional radius vector (m)

r 0 :

initial particle radius (m)

S 0max :

hardness or strength in age-hardened base material (VPN or Pa)

S 0min :

hardness or strength in fully reverted condition (VPN or Pa)

T :

temperature (°C or K)

T max :

maximum temperature (°C or K)

T s :

peak temperature (°C or K)

T s :

phase boundary solvus temperature (°C or K)

t :

time (s)

t* r1 :

maximum hold time for complete dissolution at reference temperature (s)

t* r2 :

time taken to precipitate a certain fraction of β′-Mg2Si at a chosen reference temperature (s)

v :

welding speed (m s−1)

V :

unit volume (m3)

V m :

molar volume (m3 mol−1)

x :

x-axis/welding direction (m)

y :

y-axis/transverse direction (m)

Z h :

Zener-Hollomon parameter (s−1)

z :

z-axis/thickness direction

ρc :

volume heat capacity (J m−3 °C−1)

ɛ :

strain rate (s−1)

γ :

interfacial energy (J m−2)

μ :

friction coefficient

ω :

angular velocity (rad/s)

References

  1. O.T. Midling: Proc. 4th Int. Conf. on Aluminium Alloys—Their Physical and Mechanical Properties, Atlanta, GA, Sept. 1994, T. Sanders and E.A. Starke, eds., Georgia Institute of Technology School of Material Science and Engineering, Atlanta, GA, vol. I, pp. 451–58.

    Google Scholar 

  2. C.J. Dawes and W.M. Thomas: Welding J., 1996, vol. 75 (3), pp. 41–45.

    Google Scholar 

  3. O.T. Midling and H.G. Johansen: 6th Int. Aluminium Technology Seminar & Exposition, ET96, Chicago, IL, May 14–17, 1996, R.I. Werner, R. Peacock, and S. James, eds., Aluminium Association and the Aluminium Extruders Council, IL, USA, vol. II, pp. 451–58.

    Google Scholar 

  4. O.T. Midling: Proc. Aluminium 97 Conf., Sept. 24–25, 1997, Essen, Germany, Argus Business Media Ltd., United Kingdom, and Rumrest GmbH, Germany, DMG Business Media Ltd., London, United Kingdom, pp. 26/1–26/6.

  5. C.J. Dawes: Welding Met. Fabrication, 1995, vol. 63, pp. 13–16.

    CAS  Google Scholar 

  6. C.J. Dawes: Proc. 6th Int. Symp. on “The Role of Welding Science and Technology in the 21st Century”, Nagoya, Japan, 1996, Japan Welding Society, Tokyo, Japan, pp. 711–18.

    Google Scholar 

  7. S. Kallee, D. Richardson, and I. Henderson: Schweissen & Schneiden (Welding & Cutting), 1997, vol. 49, pp. 904–09.

    Google Scholar 

  8. K.E. Knipström and B. Pekkari: Welding J., 1997, vol. 76, pp. 55–57.

    Google Scholar 

  9. J. Hagström and R. Sandström: Sci. Technol. Welding Joining, 1997, vol. 2, pp. 199–208.

    Google Scholar 

  10. M. Enomoto: J. Light Met. Welding Constr., 1998, vol. 36, pp. 25–29.

    Google Scholar 

  11. W.M. Thomas and E.D. Nicholas: Mater. Desember, 1997, vol. 18 (4–6), pp. 267–73.

    Google Scholar 

  12. M.B. Ellis and M. Strangwood: Mater. Sci. Technol., 1996, vol. 12, pp. 970–77.

    CAS  Google Scholar 

  13. C.G. Rhodes, M.W. Mahoney, W.H. Bingel, R.A. Spurling, and C.C. Bamton: Scripta Mater., 1997, vol. 36, pp. 69–75.

    Article  CAS  Google Scholar 

  14. M.W. Mahoney, C.G. Rhodes, J.G. Flintoff, R.A. Spurling, and W.H. Bingel: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 1955–64.

    Article  CAS  Google Scholar 

  15. G. Liu, L.E. Murr, C.-S. Niou, J.C. McClure, and F.R. Vega: Scripta Mater., 1997, vol. 37, pp. 355–61.

    Article  CAS  Google Scholar 

  16. L.E. Murr, G. Liu, and J.C. McClure: J. Mater. Sci., 1998, vol. 33, pp. 1243–51.

    Article  CAS  Google Scholar 

  17. Y.S. Sato, H. Kokawa, M. Enomoto, and S. Jogan: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 2429–37.

    CAS  Google Scholar 

  18. Y.S. Sato, H. Kokawa, M. Enomoto, S. Jogan, and T. Hashimoto: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 3125–30.

    CAS  Google Scholar 

  19. M.J. Russel and H.R. Shercliff: Proc. Inalco ’98 7th Int. Conf., TWI, Cambridge, United Kingdom, April 16, 1998, The Welding Institute (TWI), Cambridge, United Kingdom, vol. 2, pp. 185–95.

    Google Scholar 

  20. A.P. Reynolds, W.D. Lockwood, and T.U. Seidel: Proc. 7th Int. Conf. on Aluminium Alloys—Their Physical and Mechanical Properties, Charlottesville, VA, Apr. 2000, E.A. Starke, T.H. Sanders, and W.A. Cassada, Trans Tech Publications, Zuerich, Switzerland, NH, Part 3, pp. 1719–24.

    Google Scholar 

  21. Ø. Grong: Metallurgical Modelling of Welding, 2nd ed., The Institute of Materials, London, 1997.

    Google Scholar 

  22. B.I. Bjørneklett, Ø. Grong, O.R. Myhr, and A.O. Kluken: Acta Mater., 1998, vol. 46, pp. 6257–66.

    Article  Google Scholar 

  23. B.I. Bjørneklett, Ø. Grong, O.R. Myhr, and A.O. Kluken: Sci. Technol. Welding Joining, 1999, vol. 4, pp. 161–69.

    Article  Google Scholar 

  24. O.R. Myhr and Ø. Grong: Acta Metall. Mater., 1991, vol. 39, pp. 2693 and 2703–08.

    Article  CAS  Google Scholar 

  25. B.I. Bjørneklett, Ø. Grong, O.R. Myhr, and A.O. Kluken: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 2667–77.

    Google Scholar 

  26. O.R. Myhr, Ø. Grong, S. Klokkehaug, H.G. Fjær, and A.O. Kluken: Sci. Technol. Welding Joining, 1997, vol. 2, pp. 245–53.

    CAS  Google Scholar 

  27. O.R. Myhr, Ø. Grong, S. Klokkehaug, H.G. Fjær, and A.O. Kluken: Welding J., 1998, vol. 77, pp. 286–92.

    Google Scholar 

  28. O.R. Myhr, Ø. Grong, S. Klokkehaug, H.G. Fjær, and A.O. Kluken: Proc. 5th Int. Conf. on Trends in Welding Research, Pine Mountain, GA, June 1–5, 1999, ASM INTERNATIONAL, Materials Park, OH, 1999, pp. 233–38.

    Google Scholar 

  29. Ø. Frigaard: Ph.D. Thesis, Norwegian University of Science and Technology, Trondheim, 1999, IME-Report No. 1999–5.

    Google Scholar 

  30. H.S. Carslaw and J.C. Jaeger: Conduction of Heat in Solids, Oxford University Press, Oxford, United Kingdom, 1959.

    Google Scholar 

  31. O.T. Midling and Ø. Grong: Acta Metall. Mater., 1994, vol. 42, pp. 1595–1609 and 1611–22.

    Article  CAS  Google Scholar 

  32. B. Crossland: Friction Welding. Cont. Phys., 1971, vol. 12 (6), pp. 559–74.

    CAS  Google Scholar 

  33. H.S. Kong and M.F. Ashby: “Case Studies in the Application of Temperature Maps for Dry Sliding,” Engineering Department Report, Cambridge University, Cambridge, United Kingdom, 1991.

    Google Scholar 

  34. J. Hjelen: Proc. 3rd Int. Conf. on Aluminium Alloys—Their Physical and Mechanical Properties, Trondheim, Norway, June 1992, The Norwegian Institute of Technology, Trondheim, vol. II, pp. 408–13.

    Google Scholar 

  35. Friction Data Guide: An Engineering Study of Coefficient of Friction of Materials and Coatings, Slide-chart presentation from General Magnaplate Corp., Linden, NJ, 1988.

  36. O. Reiso: Proc. 3rd Int. Aluminium Extrusion Technology Seminar, Atlanta, GA, 1984, Aluminium Association, Washington, DC, 1984, vol. 1, pp. 31–40.

    Google Scholar 

  37. J.E. Hatch: Aluminium, Properties and Physical Metallurgy, ASM, Metals Park, OH, 1984.

    Google Scholar 

  38. P.E. Drønen and N. Ryum: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 521–30.

    Google Scholar 

  39. Ø. Frigaard, Ø. Grong, B. Bjørneklett, and O.T. Midling: Proc. 1st Int. Symp. on Friction Stir Welding, Thousand Oaks, CA, June 1999, The Welding Institute (TWI), Cambridge, United Kingdom, 1999.

    Google Scholar 

  40. O.V. Flores, C. Kennedy, L.E. Murr, D. Brown, S. Pappu, B.M. Nowak, and J.C. McClure: Scripta Mater., 1998, vol. 38 (5), pp. 703–08.

    Article  CAS  Google Scholar 

  41. H.S. Yang: Proc. 6th Int. Conf. on Aluminium Alloys, ICAA-6, Toyohashi, Japan, July 5–10, 1998, T. Sato, S. Kumai, T. Kobayashi, and Y. Murakami, eds., The Japan Institute of Light Metals, Tokyo, vol. 3, pp. 1483–88.

    Google Scholar 

  42. A.F. Norman, I. Brough, and P.B. Pragnell: Proc. 7th Int. Conf. on Aluminium Alloys—Their Physical and Mechanical Properties, Charlottesville, VA, Apr. 2000, E.A. Starke and W.A. Cassada, eds., Trans Tech Publications, Zuerich, Switzerland, NH, Part 3, pp. 1713–18.

    Google Scholar 

  43. F.J. Humphereys and M. Hatherly: in Recrystallization and Related Annealing Phenomena, Pergamon, Elsevier Science Ltd., Oxford, United Kingdom, 1996, pp. 363–92.

    Google Scholar 

  44. H.J. McQeen and J.J. Jonas: Plastic Deformation of Materials, Academic Press, New York, NY, 1975, vol. 6, pp. 393–493.

    Google Scholar 

  45. Ø. Frigaard, B.I. Bjørneklett, Ø. Grong, O.R. Myhr, and O.T. Midling: Proc. 6th Int. Conf. on Aluminium Alloys—Their Physical and Mechanical Properties, Toyohashi, Japan, July 1998, T. Sato, S. Kumai, T. Kobayashi, and Y. Murakami, eds., The Japan Institute of Light Metals, Tokyo, 1998, vol. III, pp. 1477–82.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frigaard, Ø., Grong, Ø. & Midling, O.T. A process model for friction stir welding of age hardening aluminum alloys. Metall Mater Trans A 32, 1189–1200 (2001). https://doi.org/10.1007/s11661-001-0128-4

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-001-0128-4

Keywords

Navigation