Skip to main content

Advertisement

Log in

miR-155-5p can be involved in acquisition of osseointegration on titanium surface

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Dental implants made of titanium are commonly used. Although titanium implants succeed by osseointegration with bone, the detailed molecular mechanism of osseointegration is unclear. To clarify the involvement of microRNA (miRNA) in the acquisition of osseointegration on titanium, here we compared the miRNA expression profiles of mouse osteoblast-like cells (MC3T3-E1) cultured on titanium-, gold-, and stainless steel–coating glass dishes by microarray analysis. Three kinds of metals, namely titanium, gold, and stainless steel, were coated on the surface of the glass dishes by sputtering with similar roughness and shape of their surface. After MC3T3-E1 cells were cultured on the dishes without coating or coating with titanium, gold, or stainless steel for 6 h, total RNA was extracted, and miRNA expression was analyzed by microarray. To confirm the expression of the selected miRNA during osteogenic differentiation of MC3T3-E1 cells, real-time PCR analysis was performed. Furthermore, the effects of selected miRNA were examined by ectopic overexpression in MC3T3-E1 cells. The microarray analysis revealed that the expressions of miR-155-5p and miR-7023-3p were significantly increased in MC3T3-E1 cells cultured on titanium-coating glass dishes, compared to non-coating, gold-, and stainless steel–coating glass dishes. Interestingly, miR-155-5p was upregulated during osteogenic differentiation of MC3T3-E1 cells. Furthermore, overexpression of miR-155-5p enhanced the expression of Runx2 and Col1a1. In this study, miR-155-5p may be involved in the acquisition of osseointegration on titanium implant via upregulating osteogenic differentiation–related genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.

Similar content being viewed by others

References

Download references

Funding

This work was supported by JSPS KAKENHI Grant Numbers JP15K15741, JP19K10290 and JP22K10121.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiko Yamamura.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamamura, Y., Miyoshi, K., Mouri, Y. et al. miR-155-5p can be involved in acquisition of osseointegration on titanium surface. In Vitro Cell.Dev.Biol.-Animal 58, 693–701 (2022). https://doi.org/10.1007/s11626-022-00718-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-022-00718-2

Keywords

Navigation