Skip to main content
Log in

Review of borophene and its potential applications

  • Review Article
  • Published:
Frontiers of Physics Aims and scope Submit manuscript

Abstract

Since two-dimensional boron sheet (borophene) synthesized on Ag substrates in 2015, research on borophene has grown fast in the fields of condensed matter physics, chemistry, material science, and nanotechnology. Due to the unique physical and chemical properties, borophene has various potential applications. In this review, we summarize the progress on borophene with a particular emphasis on the recent advances. First, we introduce the phases of borophene by experimental synthesis and theoretical predictions. Then, the physical and chemical properties, such as mechanical, thermal, electronic, optical and superconducting properties are summarized. We also discuss in detail the utilization of the borophene for wide ranges of potential application among the alkali metal ion batteries, Li-S batteries, hydrogen storage, supercapacitor, sensor and catalytic in hydrogen evolution, oxygen reduction, oxygen evolution, and CO2 electroreduction reaction. Finally, the challenges and outlooks in this promising field are featured on the basis of its current development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene, Nature 438(7065), 197 (2005)

    ADS  Google Scholar 

  2. Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Experimental observation of the quantum Hall effect and Berry’s phase in graphene, Nature 438(7065), 201 (2005)

    ADS  Google Scholar 

  3. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, Raman spectrum of graphene and graphene layers, Phys. Rev. Lett. 97(18), 187401 (2006)

    ADS  Google Scholar 

  4. H. J. Yan, B. Xu, S. Q. Shi, and C. Y. Ouyang, Firstprinciples study of the oxygen adsorption and dissociation on graphene and nitrogen doped graphene for Li-air batteries, J. Appl. Phys. 112(10), 104316 (2012)

    ADS  Google Scholar 

  5. N. Wei, Y. Chen, K. Cai, J. Zhao, H. Q. Wang, and J. C. Zheng, Thermal conductivity of graphene kirigami: Ultralow and strain robustness, Carbon 104, 203 (2016)

    Google Scholar 

  6. Y. Chen, Y. Zhang, K. Cai, J. Jiang, J. C. Zheng, J. Zhao, and N. Wei, Interfacial thermal conductance in graphene/black phosphorus heterogeneous structures, Carbon 117, 399 (2017)

    Google Scholar 

  7. Y. H. Lu, W. Chen, Y. P. Feng, and P. M. He, Tuning the electronic structure of graphene by an organic molecule, J. Phys. Chem. B 113(1), 2 (2009)

    Google Scholar 

  8. Y. P. Feng, L. Shen, M. Yang, A. Z. Wang, M. G. Zeng, Q. Y. Wu, S. Chintalapati, and C. R. Chang, Prospects of spintronics based on 2D materials, WIRES Comput. Mol. Sci. 7(5), e1313 (2017)

    Google Scholar 

  9. N. Wei, L. Xu, H. Q. Wang, and J. C. Zheng, Strain engineering of thermal conductivity in graphene sheets and nanoribbons: a demonstration of magic flexibility, Nanotechnology 22(10), 105705 (2011)

    ADS  Google Scholar 

  10. L. Q. Xu, N. Wei, Y. P. Zheng, Z. Y. Fan, H. Q. Wang, and J. C. Zheng, Graphene-nanotube 3D networks: Intriguing thermal and mechanical properties, J. Mater. Chem. 22(4), 1435 (2012)

    Google Scholar 

  11. F. Rao, Z. Wang, B. Xu, L. Chen, and C. Ouyang, Firstprinciples study of lithium and sodium atoms intercalation in fluorinated graphite, Engineering 1(2), 243 (2015)

    Google Scholar 

  12. K. Watanabe, T. Taniguchi, and H. Kanda, Directbandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal, Nat. Mater. 3(6), 404 (2004)

    ADS  Google Scholar 

  13. G. Liu, X. L. Lei, M. S. Wu, B. Xu, and C. Y. Ouyang, Comparison of the stability of free-standing silicene and hydrogenated silicene in oxygen: A first principles investigation, J. Phys.: Condens. Matter 26(35), 355007 (2014)

    Google Scholar 

  14. A. Molle, C. Grazianetti, L. Tao, D. Taneja, M. H. Alam, and D. Akinwande, Silicene, silicene derivatives, and their device applications, Chem. Soc. Rev. 47(16), 6370 (2018)

    Google Scholar 

  15. G. Li, L. Zhang, W. Xu, J. Pan, S. Song, Y. Zhang, H. Zhou, Y. Wang, L. Bao, Y. Y. Zhang, S. Du, M. Ouyang, S. T. Pantelides, and H. J. Gao, Stable silicene in graphene/silicene van der Waals heterostructures, Adv. Mater. 30(49), 1804650 (2018)

    Google Scholar 

  16. G. Liu, S. B. Liu, B. Xu, C. Y. Ouyang, H. Y. Song, S. Guan, and S. A. Yang, Multiple Dirac points and hydrogenation-induced magnetism of germanene layer on Al(111) surface, J. Phys. Chem. Lett. 6(24), 4936 (2015)

    Google Scholar 

  17. X. R. Hu, J. M. Zheng, and Z. Y. Ren, Strong interlayer coupling in phosphorene/graphene van der Waals heterostructure: A first-principles investigation, Front. Phys. 13, 137302 (2017)

    Google Scholar 

  18. Y. Q. Cai, Z. Q. Bai, H. Pan, Y. P. Feng, B. I. Yakobson, and Y. W. Zhang, Constructing metallic nanoroads on a MoS(2) monolayer via hydrogenation, Nanoscale 6(3), 1691 (2014)

    ADS  Google Scholar 

  19. Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, Electronics and optoelectronics of twodimensional transition metal dichalcogenides, Nat. Nanotechnol. 7(11), 699 (2012)

    ADS  Google Scholar 

  20. J. Pei, J. Yang, R. Xu, Y. H. Zeng, Y. W. Myint, S. Zhang, J. C. Zheng, Q. Qin, X. Wang, W. Jiang, and Y. Lu, Exciton and trion dynamics in bilayer MoS2, Small 11(48), 6384 (2015)

    Google Scholar 

  21. J. Pei, J. Yang, X. Wang, F. Wang, S. Mokkapati, T. Lu, J. C. Zheng, Q. Qin, D. Neshev, H. H. Tan, C. Jagadish, and Y. Lu, Excited state biexcitons in atomically thin MoSe2, ACS Nano 11(7), 7468 (2017)

    Google Scholar 

  22. C. Shang, B. Xu, X. Lei, S. Yu, D. Chen, M. Wu, B. Sun, G. Liu, and C. Ouyang, Bandgap tuning in MoSSe bilayers: Synergistic effects of dipole moment and interlayer distance, Phys. Chem. Chem. Phys. 20(32), 20919 (2018)

    Google Scholar 

  23. J. Mao, Y. Wang, Z. Zheng, and D. Deng, The rise of two-dimensional MoS2 for catalysis, Front. Phys. 13(4), 138118 (2018)

    Google Scholar 

  24. S. Zhang, Z. Yan, Y. Li, Z. Chen, and H. Zeng, Atomically thin arsenene and antimonene: Semimetal-semiconductor and indirect-direct band-gap transitions, Angew. Chem. Int. Ed. 54(10), 3112 (2015)

    Google Scholar 

  25. J. Ji, X. Song, J. Liu, Z. Yan, C. Huo, S. Zhang, M. Su, L. Liao, W. Wang, Z. Ni, Y. Hao, and H. Zeng, Twodimensional antimonene single crystals grown by van der Waals epitaxy, Nat. Commun. 7(1), 13352 (2016)

    ADS  Google Scholar 

  26. A. J. Mannix, X. F. Zhou, B. Kiraly, J. D. Wood, D. Alducin, B. D. Myers, X. Liu, B. L. Fisher, U. Santiago, J. R. Guest, M. J. Yacaman, A. Ponce, A. R. Oganov, M. C. Hersam, and N. P. Guisinger, Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs, Science 350(6267), 1513 (2015)

    ADS  Google Scholar 

  27. W. Li, L. Kong, C. Chen, J. Gou, S. Sheng, W. Zhang, H. Li, L. Chen, P. Cheng, and K. Wu, Experimental realization of honeycomb borophene, Sci. Bull. (Beijing) 63(5), 282 (2018)

    Google Scholar 

  28. B. Feng, J. Zhang, Q. Zhong, W. Li, S. Li, H. Li, P. Cheng, S. Meng, L. Chen, and K. Wu, Experimental realization of two-dimensional boron sheets, Nat. Chem. 8(6), 563 (2016)

    Google Scholar 

  29. E. S. Penev, A. Kutana, and B. I. Yakobson, Can twodimensional boron superconduct? Nano Lett. 16(4), 2522 (2016)

    ADS  Google Scholar 

  30. S. G. Xu, Y. J. Zhao, J. H. Liao, X. B. Yang, and H. Xu, The nucleation and growth of borophene on the Ag(111) surface, Nano Res. 9(9), 2616 (2016)

    Google Scholar 

  31. A. Lopez-Bezanilla and P.B. Littlewood, Electronic properties of 8–Pmmn borophene, Phys. Rev. B 93, 241405(R) (2016)

    ADS  Google Scholar 

  32. B. Peng, H. Zhang, H. Z. Shao, Y. F. Xu, R. J. Zhang, and H. Y. Zhu, Electronic, optical, and thermodynamic properties of borophene from first-principle calculations, J. Mater. Chem. C 4(16), 3592 (2016)

    Google Scholar 

  33. J. Carrete, W. Li, L. Lindsay, D. A. Broido, L. J. Gallego, and N. Mingo, Physically founded phonon dispersions of few-layer materials and the case of borophene, Mater. Res. Lett. 4(4), 204 (2016)

    Google Scholar 

  34. H. F. Wang, Q. F. Li, Y. Gao, F. Miao, X. F. Zhou, and X. G. Wan, Strain effects on borophene: Ideal strength, negative Possion’s ratio and phonon instability, New J. Phys. 18(7), 073016 (2016)

    ADS  Google Scholar 

  35. R. C. Xiao, D. F. Shao, W. J. Lu, H. Y. Lv, J. Y. Li, and Y. P. Sun, Enhanced superconductivity by strain and carrier-doping in borophene: A first principles prediction, Appl. Phys. Lett. 109(12), 122604 (2016)

    ADS  Google Scholar 

  36. M. Gao, Q. Z. Li, X. W. Yan, and J. Wang, Prediction of phonon-mediated superconductivity in borophene, Phys. Rev. B 95(2), 024505 (2017)

    ADS  Google Scholar 

  37. Y. X. Liu, Y. J. Dong, Z. Y. Tang, X. F. Wang, L. Wang, T. J. Hou, H. P. Lin, and Y. Y. Li, Stable and metallic borophene nanoribbons from first-principles calculations, J. Mater. Chem. C 4(26), 6380 (2016)

    Google Scholar 

  38. X. B. Yang, Y. Ding, and J. Ni, Ab initio prediction of stable boron sheets and boron nanotubes: Structure, stability, and electronic properties, Phys. Rev. B 77, 041402(R) (2008)

    ADS  Google Scholar 

  39. A. D. Zabolotskiy and Y. E. Lozovik, Strain-induced pseudomagnetic field in Dirac semimetal borophene, Phys. Rev. B 94(16), 165403 (2016)

    ADS  Google Scholar 

  40. J. H. Yuan, L. W. Zhang, and K. M. Liew, Effect of grafted amine groups on in-plane tensile properties and high temperature structural stability of borophene nanoribbons, RSC Advances 5(91), 74399 (2015)

    Google Scholar 

  41. H. Liu, J. Gao, and J. Zhao, From boron cluster to twodimensional boron sheet on Cu(111) surface: Growth mechanism and hole formation, Sci. Rep. 3(1), 3238 (2013)

    ADS  Google Scholar 

  42. X. M. Zhang, J. P. Hu, Y. C. Cheng, H. Y. Yang, Y. G. Yao, and S. Y. Yang, Borophene as an extremely high capacity electrode material for Li-ion and Na-ion batteries, Nanoscale 8(33), 15340 (2016)

    Google Scholar 

  43. H. Shu, F. Li, P. Liang, and X. Chen, Unveiling the atomic structure and electronic properties of atomically thin boron sheets on an Ag(111) surface, Nanoscale 8(36), 16284 (2016)

    Google Scholar 

  44. X. Liu, Z. Zhang, L. Wang, B. I. Yakobson, and M. C. Hersam, Intermixing and periodic self-assembly of borophene line defects, Nat. Mater. 17(9), 783 (2018)

    ADS  Google Scholar 

  45. V. Wang and W. T. Geng, Lattice defects and the mechanical anisotropy of borophene, J. Phys. Chem. C 121(18), 10224 (2017)

    Google Scholar 

  46. Z. Pang, X. Qian, Y. Wei, and R. Yang, Super-stretchable borophene, EPL 116(3), 36001 (2016)

    ADS  Google Scholar 

  47. Y. An, J. Jiao, Y. Hou, H. Wang, R. Wu, C. Liu, X. Chen, T. Wang, and K. Wang, Negative differential conductance effect and electrical anisotropy of 2D ZrB2 monolayers, J. Phys.: Condens. Matter 31, 065301 (2019)

    ADS  Google Scholar 

  48. X. Tang, W. Sun, C. Lu, L. Kou, and C. Chen, Atomically thin NiB6 monolayer: A robust Dirac material, Phys. Chem. Chem. Phys. 21, 617 (2019)

    Google Scholar 

  49. H. Cui, X. Zhang, and D. Chen, Borophene: A promising adsorbent material with strong ability and capacity for SO2 adsorption, Appl. Phys. A 124, 636 (2018)

    ADS  Google Scholar 

  50. L. Kong, K. Wu, and L. Chen, Recent progress on borophene: Growth and structures, Front. Phys. 13(3), 138105 (2018)

    Google Scholar 

  51. A. Lherbier, A. R. Botello-Méndez, and J.C. Charlier, Electronic and optical properties of pristine and oxidized borophene, 2D Materials 3, 045006 (2016)

    Google Scholar 

  52. E. S. Penev, S. Bhowmick, A. Sadrzadeh, and B. I. Yakobson, Polymorphism of two-dimensional boron, Nano Lett. 12(5), 2441 (2012)

    ADS  Google Scholar 

  53. Z. H. Zhang, Y. Yang, E. S. Penev, and B. I. Yakobson, Elasticity, flexibility, and ideal strength of borophenes, Adv. Funct. Mater. 27(9), 1605059 (2017)

    Google Scholar 

  54. Y. Zhao, S. Zeng, and J. Ni, Superconductivity in twodimensional boron allotropes, Phys. Rev. B 93, 014502 (2016)

    ADS  Google Scholar 

  55. X. Yang, Y. Ding, and J. Ni, Ab initio prediction of stable boron sheets and boron nanotubes: structure, stability, and electronic properties, Phys. Rev. B 77, 041402 (2008)

    ADS  Google Scholar 

  56. Z. Zhang, E. S. Penev, and B. I. Yakobson, Twodimensional materials: Polyphony in B flat, Nat. Chem. 8(6), 525 (2016)

    Google Scholar 

  57. T. Tsafack and B. I. Yakobson, Thermomechanical analysis of two-dimensional boron monolayers, Phys. Rev. B 93, 165434 (2016)

    ADS  Google Scholar 

  58. Z. Zhang, A. J. Mannix, Z. Hu, B. Kiraly, N. P. Guisinger, M. C. Hersam, and B. I. Yakobson, Substrate-induced nanoscale undulations of borophene on silver, Nano Lett. 16(10), 6622 (2016)

    ADS  Google Scholar 

  59. Y. Liu, E. S. Penev, and B. I. Yakobson, Probing the synthesis of two-dimensional boron by first-principles computations, Angew. Chem. Int. Ed. 52(11), 3156 (2013)

    Google Scholar 

  60. F. Ma, Y. Jiao, G. Gao, Y. Gu, A. Bilic, Z. Chen, and A. Du, Graphene-like two-dimensional ionic boron with double Dirac cones at ambient condition, Nano Lett. 16(5), 3022 (2016)

    ADS  Google Scholar 

  61. Y. Zhao, S. Zeng, and J. Ni, Phonon-mediated superconductivity in borophenes, Appl. Phys. Lett. 108(24), 242601 (2016)

    ADS  Google Scholar 

  62. Z. H. Zhang, Y. Yang, G. Y. Gao, and B. I. Yakobson, Two-dimensional boron monolayers mediated by metal substrates, Angew. Chem. Int. Ed. 54(44), 13022 (2015)

    Google Scholar 

  63. R. Balog, B. Jorgensen, L. Nilsson, M. Andersen, E. Rienks, M. Bianchi, M. Fanetti, E. Laegsgaard, A. Baraldi, S. Lizzit, Z. Sljivancanin, F. Besenbacher, B. Hammer, T. G. Pedersen, P. Hofmann, and L. Hornekaer, Bandgap opening in graphene induced by patterned hydrogen adsorption, Nat. Mater. 9(4), 315 (2010)

    ADS  Google Scholar 

  64. A. Bhattacharya, S. Bhattacharya, and G. P. Das, Strain-induced band-gap deformation of H/F passivated graphene and h-BN sheet, Phys. Rev. B 84(7), 075454 (2011)

    ADS  Google Scholar 

  65. M. Houssa, E. Scalise, K. Sankaran, G. Pourtois, V. V. Afanas’ev, and A. Stesmans, Electronic properties of hydrogenated silicene and germanene, Appl. Phys. Lett. 98(22), 223107 (2011)

    ADS  Google Scholar 

  66. Y. Jiao, F. Ma, J. Bell, A. Bilic, and A. Du, Twodimensional boron hydride sheets: high stability, massless Dirac fermions, and excellent mechanical properties, Angew. Chem. Int. Ed. 55(35), 10292 (2016)

    Google Scholar 

  67. L. C. Xu, A. Du, and L. Kou, Hydrogenated borophene as a stable two-dimensional Dirac material with an ultrahigh Fermi velocity, Phys. Chem. Chem. Phys. 18(39), 27284 (2016)

    Google Scholar 

  68. Z. Wang, T. Y. Lu, H. Q. Wang, Y. P. Feng, and J. C. Zheng, High anisotropy of fully hydrogenated borophene, Phys. Chem. Chem. Phys. 18(46), 31424 (2016)

    Google Scholar 

  69. G. I. Giannopoulos, Mechanical behavior of planar borophenes: A molecular mechanics study, Comput. Mater. Sci. 129, 304 (2017)

    Google Scholar 

  70. B. Mortazavi, O. Rahaman, A. Dianat, and T. Rabczuk, Mechanical responses of borophene sheets: A firstprinciples study, Phys. Chem. Chem. Phys. 18(39), 27405 (2016)

    Google Scholar 

  71. Q. Peng, L. Han, X. Wen, S. Liu, Z. Chen, J. Lian, and S. De, Mechanical properties and stabilities of alpha-boron monolayers, Phys. Chem. Chem. Phys. 17(3), 2160 (2015)

    Google Scholar 

  72. M. Q. Le, B. Mortazavi, and T. Rabczuk, Mechanical properties of borophene films: A reactive molecular dynamics investigation, Nanotechnology 27(44), 445709 (2016)

    Google Scholar 

  73. L. Shao, Y. Li, Q. Yuan, M. Li, Y. Du, F. Zeng, P. Ding, and H. Ye, Effects of strain on mechanical and electronic properties of borophene, Mater. Res. Express 4(4), 045020 (2017)

    ADS  Google Scholar 

  74. R. Peköz, M. Konuk, M. E. Kilic, and E. Durgun, Twodimensional fluorinated boron sheets: Mechanical, electronic, and thermal properties, ACS Omega 3(2), 1815 (2018)

    Google Scholar 

  75. Q. Wei and X. Peng, Superior mechanical flexibility of phosphorene and few-layer black phosphorus, Appl. Phys. Lett. 104(25), 251915 (2014)

    ADS  Google Scholar 

  76. Y. P. Zhou and J. W. Jiang, Molecular dynamics simulations for mechanical properties of borophene: parameterization of valence force field model and Stillinger-Weber potential, Sci. Rep. 7(1), 45516 (2017)

    ADS  Google Scholar 

  77. W. C. Yi, W. Liu, J. Botana, L. Zhao, Z. Liu, J. Y. Liu, and M. S. Miao, Honeycomb boron allotropes with Dirac cones: a true analogue to graphene, J. Phys. Chem. Lett. 8(12), 2647 (2017)

    Google Scholar 

  78. H. Zhong, K. Huang, G. Yu, and S. Yuan, Electronic and mechanical properties of few-layer borophene, Phys. Rev. B 98(5), 054104 (2018)

    ADS  Google Scholar 

  79. Z. Q. Wang, H. Cheng, T. Y. Lu, H. Q. Wang, Y. P. Feng, and J. C. Zheng, A super-stretchable boron nanoribbon network, Phys. Chem. Chem. Phys. 20(24), 16510 (2018)

    Google Scholar 

  80. Z. Wang, T. Y. Lu, H. Q. Wang, Y. P. Feng, and J. C. Zheng, New crystal structure prediction of fully hydrogenated borophene by first principles calculations, Sci. Rep. 7(1), 609 (2017)

    ADS  Google Scholar 

  81. R. C. Andrew, R. E. Mapasha, A. M. Ukpong, and N. Chetty, Mechanical properties of graphene and boronitrene, Phys. Rev. B 85(12), 125428 (2012)

    ADS  Google Scholar 

  82. X. D. Wei, B. Fragneaud, C. A. Marianetti, and J. W. Kysar, Nonlinear elastic behavior of graphene: Ab initiocalculations to continuum description, Phys. Rev. B 80(20), 205407 (2009)

    ADS  Google Scholar 

  83. J. Yuan, N. Yu, K. Xue, and X. Miao, Ideal strength and elastic instability in single-layer 8-Pmmn borophene, RSC Advances 7(14), 8654 (2017)

    Google Scholar 

  84. Q. Peng, C. Liang, W. Ji, and S. De, A first-principles study of the mechanical properties of g-GeC, Mech. Mater. 64, 135 (2013)

    Google Scholar 

  85. B. Mortazavi, O. Rahaman, M. Makaremi, A. Dianat, G. Cuniberti, and T. Rabczuk, First-principles investigation of mechanical properties of silicene, germanene and stanene, Physica E 87, 228 (2017)

    ADS  Google Scholar 

  86. D. F. Li, J. He, G. Q. Ding, Q. Q. Tang, Y. Ying, J. J. He, C. Y. Zhong, Y. Liu, C. B. Feng, Q. L. Sun, H. B. Zhou, P. Zhou, and G. Zhang, Stretch-driven increase in ultrahigh thermal conductance of hydrogenated borophene and dimensionality crossover in phonon transmission, Adv. Funct. Mater. 28(31), 1801685 (2018)

    Google Scholar 

  87. B. Mortazavi, M. Makaremi, M. Shahrokhi, M. Raeisi, C. V. Singh, T. Rabczuk, and L. F. C. Pereira, Borophene hydride: A stiff 2D material with high thermal conductivity and attractive optical and electronic properties, Nanoscale 10(8), 3759 (2018)

    Google Scholar 

  88. H. B. Zhou, Y. Q. Cai, G. Zhang, and Y. W. Zhang, Superior lattice thermal conductance of single-layer borophene, npj 2D Mater. Appl. 1, 14 (2017)

    ADS  Google Scholar 

  89. G. Liu, H. Wang, Y. Gao, J. Zhou, and H. Wang, Anisotropic intrinsic lattice thermal conductivity of borophane from first-principles calculations, Phys. Chem. Chem. Phys. 19(4), 2843 (2017)

    Google Scholar 

  90. H. Sun, Q. Li, and X. G. Wan, First-principles study of thermal properties of borophene, Phys. Chem. Chem. Phys. 18(22), 14927 (2016)

    Google Scholar 

  91. B. Mortazavi, M. Q. Le, T. Rabczuk, and L. F. C. Pereira, Anomalous strain effect on the thermal conductivity of borophene: A reactive molecular dynamics study, Physica E 93, 202 (2017)

    ADS  Google Scholar 

  92. H. Xiao, W. Cao, T. Ouyang, S. Guo, C. He, and J. Zhong, Lattice thermal conductivity of borophene from first principle calculation, Sci. Rep. 7(1), 45986 (2017)

    ADS  Google Scholar 

  93. X. Gu and R. Yang, First-principles prediction of phononic thermal conductivity of silicene: A comparison with graphene, J. Appl. Phys. 117(2), 025102 (2015)

    ADS  Google Scholar 

  94. G. Qin, Q. B. Yan, Z. Qin, S. Y. Yue, M. Hu, and G. Su, Anisotropic intrinsic lattice thermal conductivity of phosphorene from first principles, Phys. Chem. Chem. Phys. 17(7), 4854 (2015)

    Google Scholar 

  95. H. J. Yan, Z. Q. Wang, B. Xu, and C. Y. Ouyang, Strain induced enhanced migration of polaron and lithium ion in l-MnO2, Funct. Mater. Lett. (Singap.) 5(04), 1250037 (2012)

    ADS  Google Scholar 

  96. Z. Q. Wang, M. S. Wu, G. Liu, X. L. Lei, X. Bo, and C. Y. Ouyang, Elastic properties of new solid state electrolyte material Li10GeP2S12: A study from first-principles calculations, Int. J. Electrochem. Sci. 9, 562 (2014)

    Google Scholar 

  97. T. Y. Lü, X. X. Liao, H. Q. Wang, and J. C. Zheng, Tuning the indirect–direct band gap transition of SiC, GeC and SnC monolayer in a graphene-like honeycomb structure by strain engineering: a quasiparticle GW study, J. Mater. Chem. 22(19), 10062 (2012)

    Google Scholar 

  98. V. Shukla, A. Grigoriev, N. K. Jena, and R. Ahuja, Strain controlled electronic and transport anisotropies in twodimensional borophene sheets, Phys. Chem. Chem. Phys. 20(35), 22952 (2018)

    Google Scholar 

  99. Z. Q. Wang, T. Y. Lü, H. Q. Wang, Y. P. Feng, and J. C. Zheng, Band structure engineering of borophane by first principles calculations, RSC Advances 7(75), 47746 (2017)

    Google Scholar 

  100. B. Peng, H. Zhang, H. Shao, Y. Xu, R. Zhang, and H. Zhu, The electronic, optical, and thermodynamic properties of borophene from first-principles calculations, J. Mater. Chem. C 4, 3592 (2016)

    Google Scholar 

  101. J. H. Liao, Y. C. Zhao, Y. J. Zhao, H. Xu, and X. B. Yang, Phonon-mediated superconductivity in Mg intercalated bilayer borophenes, Phys. Chem. Chem. Phys. 19(43), 29237 (2017)

    Google Scholar 

  102. M. Gao, Q. Z. Li, X. W. Yan, and J. Wang, Prediction of phonon-mediated superconductivity in borophene, Phys. Rev. B 95, 024505 (2017)

    ADS  Google Scholar 

  103. H. L. Li, L. Jing, W. W. Liu, J. J. Lin, R. Y. Tay, S. H. Tsang, and E. H. T. Teo, Scalable production of fewlayer boron sheets by liquid-phase exfoliation and their superior supercapacitive performance, ACS Nano 12(2), 1262 (2018)

    Google Scholar 

  104. G. Li, Y. Zhao, S. Zeng, M. Zulfiqar, and J. Ni, Strain effect on the superconductivity in borophenes, J. Phys. Chem. C 122(29), 16916 (2018)

    Google Scholar 

  105. C. Cheng, J. T. Sun, H. Liu, H. X. Fu, J. Zhang, X. R. Chen, and S. Meng, Suppressed superconductivity in substrate-supported β12 borophene by tensile strain and electron doping, 2D Materials 4, 025032 (2017)

    Google Scholar 

  106. J. C. Zheng and Y. M. Zhu, Searching for a higher superconducting transition temperature in strained MgB2, Phys. Rev. B 73(2), 024509 (2006)

    ADS  Google Scholar 

  107. H. R. Jiang, Z. Lu, M. C. Wu, F. Ciucci, and T. S. Zhao, Borophene: A promising anode material offering high specific capacity and high rate capability for lithium-ion batteries, Nano Energy 23, 97 (2016)

    Google Scholar 

  108. G. A. Tritsaris, E. Kaxiras, S. Meng, and E. Wang, Adsorption and diffusion of lithium on layered silicon for Li-ion storage, Nano Lett. 13(5), 2258 (2013)

    ADS  Google Scholar 

  109. Q. F. Li, C. G. Duan, X. G. Wan, and J. L. Kuo, Theoretical prediction of anode materials in Li-ion batteries on layered black and blue phosphorus, J. Phys. Chem. C 119(16), 8662 (2015)

    Google Scholar 

  110. Y. Jing, Z. Zhou, C. R. Cabrera, and Z. Chen, Metallic VS2 monolayer: A promising 2D anode material for lithium ion batteries, J. Phys. Chem. C 117(48), 25409 (2013)

    Google Scholar 

  111. Q. Tang, Z. Zhou, and P. Shen, Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X = F, OH) monolayer, J. Am. Chem. Soc. 134(40), 16909 (2012)

    Google Scholar 

  112. B. Ziebarth, M. Klinsmann, T. Eckl, and C. Elsässer, Lithium diffusion in the spinel phase Li4Ti5O12 and in the rock salt phase Li7Ti5O12 of lithium titanate from first principles, Phys. Rev. B 89, 174301 (2014)

    ADS  Google Scholar 

  113. Z. Q. Wang, Y. C. Chen, and C. Y. Ouyang, Polaron states and migration in F-doped Li2MnO3, Phys. Lett. A 378(32–33), 2449 (2014)

    ADS  Google Scholar 

  114. Z. Q. Wang, M. S. Wu, B. Xu, and C. Y. Ouyang, Improving the electrical conductivity and structural stability of the Li2MnO3 cathode via P doping, J. Alloys Compd. 658, 818 (2016)

    Google Scholar 

  115. J. Liu, C. Zhang, L. Xu, and S. Ju, Borophene as a promising anode material for sodium-ion batteries with high capacity and high rate capability using DFT, RSC Advances 8(32), 17773 (2018)

    Google Scholar 

  116. X. Zhang, J. Hu, Y. Cheng, H. Y. Yang, Y. Yao, and S. A. Yang, Borophene as an extremely high capacity electrode material for Li-ion and Na-ion batteries, Nanoscale 8(33), 15340 (2016)

    Google Scholar 

  117. L. Shi, T. Zhao, A. Xu, and J. Xu, Ab initio prediction of borophene as an extraordinary anode material exhibiting ultrafast directional sodium diffusion for sodium-based batteries, Sci. Bull. (Beijing) 61(14), 1138 (2016)

    Google Scholar 

  118. S. Banerjee, G. Periyasamy, and S. K. Pati, Possible application of 2D-boron sheets as anode material in lithium ion battery: A DFT and AIMD study, J. Mater. Chem. A 2(11), 3856 (2014)

    Google Scholar 

  119. D. Rao, L. Zhang, Z. Meng, X. Zhang, Y. Wang, G. Qiao, X. Shen, H. Xia, J. Liu, and R. Lu, Ultrahigh energy storage and ultrafast ion diffusion in borophene-based anodes for rechargeable metal ion batteries, J. Mater. Chem. A Mater. Energy Sustain. 5(5), 2328 (2017)

    Google Scholar 

  120. N. Jiang, B. Li, F. Ning, and D. Xia, All boron-based 2D material as anode material in Li-ion batteries, J. Energy Chem. 27(6), 1651 (2018)

    Google Scholar 

  121. P. Liang, Y. Cao, B. Tai, L. Zhang, H. Shu, F. Li, D. Chao, and X. Du, Is borophene a suitable anode material for sodium ion battery? J. Alloys Compd. 704, 152 (2017)

    Google Scholar 

  122. B. Mortazavi, O. Rahaman, S. Ahzi, and T. Rabczuk, Flat borophene films as anode materials for Mg, Na or Liion batteries with ultra high capacities: A first-principles study, Appl. Mater. Today 8, 60 (2017)

    Google Scholar 

  123. Y. Zhang, Z. F. Wu, P. F. Gao, S. L. Zhang, and Y. H. Wen, Could borophene be used as a promising anode material for high-performance lithium ion battery? ACS Appl. Mater. Interfaces 8(34), 22175 (2016)

    Google Scholar 

  124. J. Liu, L. Zhang, and L. Xu, Theoretical prediction of borophene monolayer as anode materials for highperformance lithium-ion batteries, Ionics (2017)

    Google Scholar 

  125. H. Chen, W. Zhang, X. Q. Tang, Y. H. Ding, J. R. Yin, Y. Jiang, P. Zhang, and H. B. Jin, First principles study of P-doped borophene as anode materials for lithium ion batteries, Appl. Surf. Sci. 427, 198 (2018)

    ADS  Google Scholar 

  126. N. K. Jena, R. B. Araujo, V. Shukla, and R. Ahuja, Borophane as a Benchmate of Graphene: A Potential 2D Material for Anode of Li and Na-Ion Batteries, ACS Appl. Mater. Interfaces 9(19), 16148 (2017)

    Google Scholar 

  127. F. Li, Y. Su, and J. Zhao, Shuttle inhibition by chemical adsorption of lithium polysulfides in B and N co-doped graphene for Li-S batteries, Phys. Chem. Chem. Phys. 18(36), 25241 (2016)

    Google Scholar 

  128. L. Zhang, P. Liang, H. B. Shu, X. L. Man, F. Li, J. Huang, Q. M. Dong, and D. L. Chao, Borophene as efficient sulfur hosts for lithium–sulfur batteries: suppressing shuttle effect and improving conductivity, J. Phys. Chem. C 121(29), 15549 (2017)

    Google Scholar 

  129. H. R. Jiang, W. Shyy, M. Liu, Y. X. Ren, and T. S. Zhao, Borophene and defective borophene as potential anchoring materials for lithium–sulfur batteries: a firstprinciples study, J. Mater. Chem. A 6(5), 2107 (2018)

    Google Scholar 

  130. F. Li and J. J. Zhao, Atomic sulfur anchored on silicene, phosphorene, and borophene for excellent cycle performance of Li-S batteries, ACS Appl. Mater. Interfaces 9(49), 42836 (2017)

    Google Scholar 

  131. H. R. Jiang, W. Shyy, M. Liu, Y. X. Ren, and T. S. Zhao, Borophene and defective borophene as potential anchoring materials for lithium–sulfur batteries: A firstprinciples study, J. Mater. Chem. A 6(5), 2107 (2018)

    Google Scholar 

  132. S. P. Jand, Y. X. Chen, and P. Kaghazchi, Comparative theoretical study of adsorption of lithium polysulfides (Li2Sx) on pristine and defective graphene, J. Power Sources 308, 166 (2016)

    ADS  Google Scholar 

  133. J. Zhao, Y. Yang, R. S. Katiyar, and Z. Chen, Phosphorene as a promising anchoring material for lithium–sulfur batteries: a computational study, J. Mater. Chem. A 4(16), 6124 (2016)

    Google Scholar 

  134. S. Er, G. A. de Wijs, and G. Brocks, DFT study of planar boron sheets: A new template for hydrogen storage, J. Phys. Chem. C 113(43), 18962 (2009)

    Google Scholar 

  135. L. Yuan, L. Kang, Y. Chen, D. Wang, J. Gong, C. Wang, M. Zhang, and X. Wu, Hydrogen storage capacity on Ti-decorated porous graphene: First-principles investigation, Appl. Surf. Sci. 434, 843 (2018)

    ADS  Google Scholar 

  136. L. Li, H. Zhang, and X. Cheng, The high hydrogen storage capacities of Li-decorated borophene, Comput. Mater. Sci. 137, 119 (2017)

    Google Scholar 

  137. X. Chen, L. Wang, W. Zhang, J. Zhang, and Y. Yuan, Cadecorated borophene as potential candidates for hydrogen storage: A first-principle study, Int. J. Hydrogen Energy 42(31), 20036 (2017)

    Google Scholar 

  138. J. Wang, Y. Du, and L. Sun, Ca-decorated novel boron sheet: A potential hydrogen storage medium, Int. J. Hydrogen Energy 41(10), 5276 (2016)

    Google Scholar 

  139. S. Haldar, S. Mukherjee, and C. V. Singh, Hydrogen storage in Li, Na and Ca decorated and defective borophene: A first principles study, RSC Advances 8(37), 20748 (2018)

    Google Scholar 

  140. F. Zhang, R. Chen, W. Zhang, and W. Zhang, A Tidecorated boron monolayer: A promising material for hydrogen storage, RSC Advances 6(16), 12925 (2016)

    Google Scholar 

  141. X. Tang, Y. Gu, and L. Kou, Theoretical investigation of calcium-decorated b 12 boron sheet for hydrogen storage, Chem. Phys. Lett. 695, 211 (2018)

    ADS  Google Scholar 

  142. T. A. Abtew, B. C. Shih, P. Dev, V. H. Crespi, and P. H. Zhang, Prediction of a multicenter-bonded solid boron hydride for hydrogen storage, Phys. Rev. B 83(9), 094108 (2011)

    ADS  Google Scholar 

  143. Y. S. Wang, F. Wang, M. Li, B. Xu, Q. Sun, and Y. Jia, Theoretical prediction of hydrogen storage on Li decorated planar boron sheets, Appl. Surf. Sci. 258(22), 8874 (2012)

    ADS  Google Scholar 

  144. J. L. Li, H. Y. Zhang, and G. W. Yang, Ultrahighcapacity molecular hydrogen storage of a lithiumdecorated boron monolayer, J. Phys. Chem. C 119(34), 19681 (2015)

    Google Scholar 

  145. I. Cabria, M. J. López, and J. A. Alonso, Density functional calculations of hydrogen adsorption on boron nanotubes and boron sheets, Nanotechnology 17(3), 778 (2006)

    ADS  Google Scholar 

  146. A. Lebon, R. H. Aguilera-del-Toro, L. J. Gallego, and A. Vega, Li-decorated Pmmn8 phase of borophene for hydrogen storage: A van der Waals corrected densityfunctional theory study, Int. J. Hydrogen Energy 44(2), 1021 (2019)

    Google Scholar 

  147. T. Liu, Y. Chen, H. Wang, M. Zhang, L. Yuan, and C. Zhang, Li-decorated β12-borophene as potential candidates for hydrogen storage: a first-principle study, Materials (Basel) 10(12), 1399 (2017)

    ADS  Google Scholar 

  148. Y. F. Zhang and X. L. Cheng, Hydrogen adsorption property of Na-decorated boron monolayer: A first principles investigation, Physica E 107, 170 (2019)

    ADS  Google Scholar 

  149. C. Ataca, E. Aktürk, S. Ciraci, and H. Ustunel, Highcapacity hydrogen storage by metallized graphene, Appl. Phys. Lett. 93(4), 043123 (2008)

    ADS  Google Scholar 

  150. B. Xu, X. L. Lei, G. Liu, M. S. Wu, and C. Y. Ouyang, Li-decorated graphyne as high-capacity hydrogen storage media: First-principles plane wave calculations, Int. J. Hydrogen Energy 39(30), 17104 (2014)

    Google Scholar 

  151. F. Li, C. W. Zhang, H. X. Luan, and P. J. Wang, Firstprinciples study of hydrogen storage on Li-decorated silicene, J. Nanopart. Res. 15(10), 1972 (2013)

    ADS  Google Scholar 

  152. X. L. Lei, G. Liu, M. S. Wu, B. Xu, C. Y. Ouyang, and B. C. Pan, Hydrogen storage on calcium-decorated BC7 sheet: A first-principles study, Int. J. Hydrogen Energy 39(5), 2142 (2014)

    Google Scholar 

  153. C. Zhang, S. Tang, M. Deng, and Y. Du, Li adsorption on monolayer and bilayer MoS2 as an ideal substrate for hydrogen storage, Chin. Phys. B 27(6), 066103 (2018)

    ADS  Google Scholar 

  154. M. Moradi, and N. Naderi, First principle study of hydrogen storage on the graphene-like aluminum nitride nanosheet, Struct. Chem. 25(4), 1289 (2014)

    Google Scholar 

  155. L. Shi, C. Ling, Y. Ouyang, and J. Wang, High intrinsic catalytic activity of two-dimensional boron monolayers for the hydrogen evolution reaction, Nanoscale 9(2), 533 (2017)

    Google Scholar 

  156. S. H. Mir, S. Chakraborty, P. C. Jha, J. Wärnå, H. Soni, P. K. Jha, and R. Ahuja, Two-dimensional boron: Lightest catalyst for hydrogen and oxygen evolution reaction, Appl. Phys. Lett. 109(5), 053903 (2016)

    ADS  Google Scholar 

  157. J. K. Nørskov, T. Bligaard, A. Logadottir, J. R. Kitchin, J. G. Chen, S. Pandelov, and U. Stimming, Trends in the exchange current for hydrogen evolution, J. Electrochem. Soc. 152(3), J23 (2005)

    Google Scholar 

  158. C. W. Liu, Z. X. Dai, J. Zhang, Y. G. Jin, D. S. Li, and C. H. Sun, Two-dimensional boron sheets as metalfree catalysts for hydrogen evolution reaction, J. Phys. Chem. C 122(33), 19051 (2018)

    Google Scholar 

  159. H. Park, A. Encinas, J. P. Scheifers, Y. Zhang, and B. P. T. Fokwa, Boron-dependency of molybdenum boride electrocatalysts for the hydrogen evolution reaction, Angew. Chem. Int. Ed. 56(20), 5575 (2017)

    Google Scholar 

  160. Y. Chen, G. Yu, W. Chen, Y. Liu, G. D. Li, P. Zhu, Q. Tao, Q. Li, J. Liu, X. Shen, H. Li, X. Huang, D. Wang, T. Asefa, and X. Zou, Highly active, nonprecious electrocatalyst comprising borophene subunits for the hydrogen evolution reaction, J. Am. Chem. Soc. 139(36), 12370 (2017)

    Google Scholar 

  161. P. Xiao, M. A. Sk, L. Thia, X. Ge, R. J. Lim, J. Y. Wang, K. H. Lim, and X. Wang, Molybdenum phosphide as an efficient electrocatalyst for the hydrogen evolution reaction, Energy Environ. Sci. 7(8), 2624 (2014)

    Google Scholar 

  162. Y. Singh, S. Back, and Y. Jung, Computational exploration of borophane-supported single transition metal atoms as potential oxygen reduction and evolution electrocatalysts, Phys. Chem. Chem. Phys. 20(32), 21095 (2018)

    Google Scholar 

  163. J. Rossmeisl, A. Logadottir, and J. K. Nørskov, Electrolysis of water on (oxidized) metal surfaces, Chem. Phys. 319(1–3), 178 (2005)

    Google Scholar 

  164. X. Tan, H. A. Tahini, and S. C. Smith, Borophene as a promising material for charge-modulated switchable CO2 capture, ACS Appl. Mater. Interfaces 9(23), 19825 (2017)

    Google Scholar 

  165. T. B. Tai and M. T. Nguyen, Interaction mechanism of CO2 ambient adsorption on transition-metal-coated boron sheets, Chemistry 19(9), 2942 (2013)

    Google Scholar 

  166. H. Shen, Y. Li, and Q. Sun, Cu atomic chains supported on b-borophene sheets for effective CO2 electroreduction, Nanoscale 10(23), 11064 (2018)

    Google Scholar 

  167. V. Nagarajan and R. Chandiramouli, Borophene nanosheet molecular device for detection of ethanol–A first-principles study, Comput. Theor. Chem. 1105, 52 (2017)

    Google Scholar 

  168. A. Shahbazi Kootenaei and G. Ansari, B36 borophene as an electronic sensor for formaldehyde: Quantum chemical analysis, Phys. Lett. A 380(34), 2664 (2016)

    ADS  Google Scholar 

  169. A. Omidvar, Borophene: A novel boron sheet with a hexagonal vacancy offering high sensitivity for hydrogen cyanide detection, Comput. Theor. Chem. 1115, 179 (2017)

    Google Scholar 

  170. R. Chandiramouli and V. Nagarajan, Borospherene nanostructure as CO and NO sensor–A first-principles study, Vacuum 142, 13 (2017)

    ADS  Google Scholar 

  171. V. Shukla, J. Wärnå, N. K. Jena, A. Grigoriev, and R. Ahuja, Toward the realization of 2D borophene based gas sensor, J. Phys. Chem. C 121(48), 26869 (2017)

    Google Scholar 

  172. R. Y. Guo, T. Li, S. E. Shi, and T. H. Li, Oxygen defects formation and optical identification in monolayer borophene, Mater. Chem. Phys. 198, 346 (2017)

    Google Scholar 

  173. Q. Li, Q. Zhou, X. Niu, Y. Zhao, Q. Chen, and J. Wang, Covalent functionalization of black phosphorus from firstprinciples, J. Phys. Chem. Lett. 7(22), 4540 (2016)

    Google Scholar 

  174. Z. Zhang, E. S. Penev, and B. I. Yakobson, Twodimensional boron: Structures, properties and applications, Chem. Soc. Rev. 46(22), 6746 (2017)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundamental Research Funds for Central Universities (Grant No. 20720160020), Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund (the second phase) under Grant No. U1501501, the National Natural Science Foundation of China (Grant Nos. 11335006 and 51661135011). This work was also supported by China Scholarship Council (CSC NO. 201706310088).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuan Ping Feng or Jin-Cheng Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, ZQ., Lü, TY., Wang, HQ. et al. Review of borophene and its potential applications. Front. Phys. 14, 33403 (2019). https://doi.org/10.1007/s11467-019-0884-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11467-019-0884-5

Keywords

Navigation