Skip to main content
Log in

Some basic concepts and problems on the petrogenesis of intra-plate ocean island basalts

  • Review / Geology
  • Published:
Chinese Science Bulletin

Abstract

Basaltic magmatism that builds intra-plate ocean islands is often considered to be genetically associated with “hotspots” or “mantle plumes”. While there have been many discussions on why ocean island basalts (OIB) are geochemically highly enriched as an integral part of the mantle plume hypothesis, our current understanding on the origin of OIB source material remains unsatisfactory, and some prevailing ideas need revision. One of the most popular views states that OIB source material is recycled oceanic crust (ROC). Among many problems with the ROC model, the ocean crust is simply too depleted (e.g., [La/Sm]PM <1) to be source material for highly enriched (e.g., [La/Sm]PM ≫ 1) OIB. Another popular view states that the enriched component of OIB comes from recycled continental crust (RCC, i.e.; terrigenous sediments). While both CC and OIB are enriched in many incompatible elements (e.g., both have [La/Sm]PM ≫1), the CC has characteristic enrichment in Pb and deletion in Nb, Ta, P and Ti. Such signature is too strong to be eliminated such that CC is unsuitable as source material for OIB. Plate tectonics and mantle circulation permit the presence of ROC and RCC materials in mantle source regions of basalts, but they must be volumetrically insignificant in contributing to basalt magmatism. The observation that OIB are not only enriched in incompatible elements, but also enriched in the progressively more incompatible elements indicates that the enriched component of OIB is of magmatic origin and most likely associated with low-degree melt metasomatism. H2O and CO2 rich incipient melt may form in the seismic low velocity zone (LVZ). This melt will rise because of buoyancy and concentrate into a melt rich layer atop the LVZ to metasomatize the growing lithosphere, forming the metasomatic vein lithologies. Erupted OIB melts may have three components: (1) fertile OIB source material from depth that is dominant, (2) the melt layer, and (3) assimilation of the metasomatic vein lithologies formed earlier in the growing/grown lithosphere. It is probable that the fertile source material from depth may be (or contain) recycled ancient metasomatized deep portions of oceanic lithosphere. In any attempt to explain the origin of mantle isotopic end-members as revealed from global OIB data, we must (1) remember our original assumptions that the primitive mantle (PM) soon after the core separation was compositionally uniform/homogeneous with the core playing a limited or no role in causing mantle isotopic heterogeneity; (2) not use OIB isotopes to conclude about the nature and compositions of ultimate source materials without understanding geochemical consequences of subduction zone metamorphism; and (3) ensure that models and hypotheses are consistent with the basic petrology and major/trace element geochemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hofmann A W, White W M. Mantle plumes from ancient oceanic crust. Earth Planet Sci Lett, 1982, 57: 421–436

    Article  Google Scholar 

  2. Niu Y L, Batiza R. Trace element evidence from seamounts for recycled oceanic crust in the eastern equatorial Pacific mantle. Earth Planet Sci Lett, 1997, 148: 471–484

    Article  Google Scholar 

  3. Niu Y L, Regelous M, Wendt J I, et al. Geochemistry of near EPR seamounts: Importance of source vs. process and the origin of enriched mantle component. Earth Planet Sci Lett, 2002, 199: 327–345

    Article  Google Scholar 

  4. Niu Y L, O’Hara M J. Origin of ocean island basalts: A new perspective from petrology, geochemistry and mineral physics considerations. J Geophys Res, 2003, 108, doi: 10.1029/2002JB002048

  5. Niu, Y L, O’Hara, M J. “Mantle plumes” are NOT from ancient oceanic crust, 2007, http://www.mantleplumes.org/NotFromCrust. html.

  6. Sobolev A V, Hofmann A W, Sobolev S V, et al. A olivine-free mantle source of Hawaii shield basalts. Nature, 2005, 434: 590–597

    Article  Google Scholar 

  7. Sobolev A V, Hofmann A W, Kuzmin D V, et al. The amount of recycled crust in sources of mantle derived melts. Science, 2007, 316: 412–417

    Article  Google Scholar 

  8. Armstrong R L. A model for the evolution of strontium and lead isotopes in a dynamic Earth. Rev Geophys, 1968, 6: 175–200

    Article  Google Scholar 

  9. Gast P W. Trace element fractionation and the origin of tholeiitic and alkaline magma types. Geochim Cosmochim Acta, 1968, 32: 1055–1086

    Article  Google Scholar 

  10. Hofmann A W. Chemical differentiation of the Earth: The relationship between mantle, continental crust, and oceanic crust. Earth Planet Sci Lett, 1988, 90: 297–314

    Article  Google Scholar 

  11. Niu Y L, O’Hara M J. MORB mantle hosts the missing Eu (Sr, Nb, Ta and Ti) in the continental crust: New perspectives on crustal growth, crust-mantle differentiation and chemical structure of oceanic upper mantle. Lithos, 2009, 112: 1–17

    Article  Google Scholar 

  12. Humphreys E R, Niu Y L. On the composition of ocean island basalts (OIB): The effects of lithospheric thickness variation and mantle metasomatism. Lithos, 2009, 112: 118–136

    Article  Google Scholar 

  13. Prytulak J, Elliott T. TiO2 enrichment in ocean island basalts. Earth Planet Sci Lett, 2007, 263: 388–403

    Article  Google Scholar 

  14. Hofmann A W, Hart S R. An assessment of local and regional isotopic equilibrium in the mantle. Earth Planet Sci Lett, 1978, 38: 44–62

    Article  Google Scholar 

  15. Christensen U R, Hofmann A W. Segregation of subducted oceanic crust in the convecting mantle. J Geophys Res, 1994, 99: 19867–19884

    Article  Google Scholar 

  16. Chauvel C, Hofmann A W, Vidal P. HIMU EM — The French Polynesian Connection. Earth Planet Sci Lett, 1992, 110: 99–119

    Article  Google Scholar 

  17. White W M, Duncan R A. Geochemistry and geochronology of the Society Islands: New evidence for deep mantle recycling. American Geophysical Union Geophys Monogr, 1996, 95: 183–206

    Google Scholar 

  18. Hofmann A W. Mantle geochemistry: The message from oceanic volcanism. Nature, 1997, 385: 219–229

    Article  Google Scholar 

  19. Sun S-S, McDonough W F. Chemical and isotopic systematics in ocean basalt: Implication for mantle composition and processes. In Saunders A D, Norry M J, eds. Magmatism in the Ocean Basins. Geol Soc Spec Publ, 1989, 42:313–345

  20. McKenzie D, O’Nions R K. The source regions of oceanic island basalts. J Petrol, 1995, 36: 133–159

    Google Scholar 

  21. Halliday A N, Lee D-C, Tommasini S, et al. Incompatible trace elements in OIB and MORB source enrichment in the sub-oceanic mantle. Earth Planet Sci Lett, 1995, 133: 379–395

    Article  Google Scholar 

  22. Niu Y L, Waggoner D G, Sinton J M, et al. Mantle source heterogeneity and melting processes beneath seafloor spreading centers: The East Pacific Rise, 18°–19°S. J Geophys Res, 1996, 101: 27711–27733

    Article  Google Scholar 

  23. Niu Y L, Collerson K D, Batiza R, et al. Origin of enriched, type mid-ocean ridge basalt at ridges far from mantle plumes: The East Pacific Rise at 11°20′N. J Geophys Res, 1999, 104: 7067–7087

    Article  Google Scholar 

  24. Donnelly K E, Goldstein S L, Langmuir C H, et al. Origin of enriched ocean ridge basalts and implications for mantle dynamics. Earth Planet Sci Lett, 2004, 226: 347–366

    Article  Google Scholar 

  25. Workman R K, Hart S R, Jackson M, et al. Recycled metasomatised lithosphere as the origin of the enriched mantle II (EM2) end-member: evidence from the Samoan Volcanic Chain. Geochem Geophys Geosyst, 2004, 5, doi:10.1029/2003GC00623

  26. Pilet S, Hernandez J, Sylvester P, et al. The metasomatic alternative for ocean island basalt chemical heterogeneity. Earth Planet Sci Lett, 2005, 236: 148–166

    Article  Google Scholar 

  27. Pilet S, Baker M B, Stolper E M. Metasomatized lithosphere and the origin of alkaline lavas. Science, 2008, 320: 916–919

    Article  Google Scholar 

  28. Niu Y L. The origin of alkaline lavas. Science, 2008, 320: 883–884

    Article  Google Scholar 

  29. Stern R J. When and how did plate tectonics begin? Theoretical and empirical considerations. Chinese Sci Bull, 2007, 52: 578–591

    Article  Google Scholar 

  30. Willbold M, Stracke A. Trace element composition of mantle end-members: Implications for recycling of oceanic and upper and lower continental crust. Geochem Geophys Geosyst, 2006, 7, doi: 10.1029/2005GC001005

  31. Niu Y L, Humphreys E R, Stolper E M, et al. Origin of intra-plate basaltic volcanism — New perspectives. Journal of Petrology, 2009, to be submitted

  32. Sobolev A V, Hofmann A W, Nikogosian I K. Recycled oceanic crust observed in “ghost plagioclase” within the source of Mauna Loa lavas. Nature, 2000, 404: 986–990

    Article  Google Scholar 

  33. Presnall D C, Gudfinnsson G H. Hawaiian volcanism—Magmas from the seismic low-velocity zone. Geochim Cosmochim Acta, 2009, 73: a1051–a1051

    Google Scholar 

  34. Li C, Ripley E M. Recycled crust in the mantle: Is high-Ni olivine the smoking gun or a red herring? Eos Trans. AGU, 2008, 89, Fall meeting Supplement, Abstract V42B-07

  35. Niu Y L, O’Hara M J. Varying Ni in OIB olivines—product of process not source. Geochim Cosmochim Acta, 2007, 71: a721–a721

    Google Scholar 

  36. Niu Y L, Humphreys E R. Lithosphere thickness control on the extent and pressure of mantle melting beneath intraplate ocean islands. Eos Trans. AGU, 2008, 89, Fall Meeting Supplement, Abstract V43F-2196

  37. Mysen B, Kushiro I. Pressure dependence of nickel partitioning between forsterite and aluminous silicate melts. Earth Planet Sci Lett, 1979, 42: 383–388

    Article  Google Scholar 

  38. Taura H, Yurimoto H, Kurita K, et al. Pressure dependence on partition coefficients for trace elements between olivine and the coexisting melts. Phys Chem Mineral, 1998, 25: 469–484

    Article  Google Scholar 

  39. Woodhead J D, McCulloch M T. Ancient seafloor signals in Pitcairn-island lavas and evidence for large-amplitude, small length-scale mantle heterogeneities. Earth Planet Sci Lett, 1989, 94: 257–273

    Article  Google Scholar 

  40. Weaver B L. The origin of ocean island basalt end-member compositions— trace-element and isotopic constraints. Earth Planet Sci Lett, 1991, 104: 381–397

    Article  Google Scholar 

  41. Woodhead J D, Devey C W. Geochemistry of the Pitcairn seamounts 1. Source character and temporal trends. Earth Planet Sci Lett, 1993, 116: 81–99

    Article  Google Scholar 

  42. Eisele J, Sharma M, Galer S J G. et al. The role of sediment recycling in EM-1 inferred from Os, Pb, Hf, Nd, Sr isotope and trace element systematics of the Pitcairn hotspot. Earth Planet Sci Lett, 2002, 196: 197–212

    Article  Google Scholar 

  43. Murphy D T, Collerson K D, Kamber B S. Lamproites from Gaussberg, Antarctica: Possible transition zone melts of Archaean subducted sediments. J Petrol, 2002, 43: 981–1001

    Article  Google Scholar 

  44. Rudnick R L, Gao S. Composition of the continental crust. Treatise on Geochemistry, 2003, 3: 1–64

    Article  Google Scholar 

  45. Plank T, Langmuir C H. The chemical compositions of subducting sediments and its consequences for the crust and mantle. Chem Geol, 1998, 145: 325–394

    Article  Google Scholar 

  46. Rapp R P, Irifune T, Shimizu N, et al. Subduction recycling of continental sediments and the origin of geochemically enriched reservoirs in the deep mantle. Earth Planet Sci Lett, 2008, 271: 14–23

    Article  Google Scholar 

  47. Zindler A, Hart S R. Chemical geodynamics. Ann Rev Earth Planet Sci, 1986, 14: 493–571

    Article  Google Scholar 

  48. Sun S-S, Hanson G N. Origin of Ross Island basanitoids and limitations upon the heterogeneity of mantle sources for alkali basalts and nephelinites. Contrib Mineral Petrol, 1975, 52: 77–106

    Article  Google Scholar 

  49. Lloyd F E, Bailey D K. Light element metasomatism of the continental mantle: the evidence and the consequences. Physics Chem Earth, 1975, 9: 389–416

    Article  Google Scholar 

  50. Frey F A, Green, D H. The mineralogy, geochemistry, and origin of lherzolite. Geochim Cosmochim Acta, 1974, 38: 1023–1059

    Article  Google Scholar 

  51. Frey F A, Green D H. Integrated models of basalt petrogenesis: A study of quartz tholeiites to olivine melilitites from south eastern Australia utilizing geochemical and experimental petrological data. J Petrol, 1978, 3: 463–513

    Google Scholar 

  52. Menzies M A. Mantle ultramafic xenoliths in alkaline magmas: evidence for mantle heterogeneity modified by magmatic activity. In: Hawkesworth C J, Norry M J, eds. Continental basalts and mantle xenoliths. Shiva: Nantwich, 1983, 92–110

    Google Scholar 

  53. Menzies M A, Hawkesworth C J. Mantle metasomatism. London: Academic Press Geology Series, 1987

    Google Scholar 

  54. O’Reilly Y S, Griffin W L. Mantle metasomatism beneath western Victoria, Australia: I, Metasomatic processes in Cr-diopside lherzolites. Geochim Cosmochim Acta, 1988, 52: 433–447

    Article  Google Scholar 

  55. Frey F A, Suen C J, Stockman H. The Ronda high temperature peridotite: Geochemistry and petrogenesis. Geochim Cosmochim Acta, 1985, 49: 2469–2491

    Article  Google Scholar 

  56. Takazawa E, Frey F A, Shimizu N, et al. Whole rock compositional variations in an upper mantle peridotite (Horoman, Hokkaido, Japan): Are they consistent with a partial melting process? Geochim Cosmochim Acta, 2000, 64: 695–716

    Article  Google Scholar 

  57. Frey F A. The origin of pyroxenites and garnet pyroxenites from Salt Lake Crater, Oahu, Hawaii, trace element evidence. Amer J Sci, 1980, 280A: 427–499

    Google Scholar 

  58. Sen G, Keshav S, Bizimis M. Hawaiian mantle xenoliths and magmas; Composition and thermal character of the lithosphere. Amer Mineral, 2005, 90: 871–887

    Article  Google Scholar 

  59. Lambert I B, Wyllie P J. Stability of hornblende and a model for the low velocity zone. Nature, 1968, 219: 1240–1241

    Article  Google Scholar 

  60. Lambert I B, Wyllie P J. Low-velocity zone of the Earth’s mantle— incipient melting caused by water. Science, 1970, 169: 764–766

    Article  Google Scholar 

  61. Green D H. Composition of basaltic magmas as indicators of conditions of origin: Application to oceanic volcanism. Philos Tran R Soc Lond, 1971, A268: 707–725

    Article  Google Scholar 

  62. Green D H, Liebermann R C. Phase equilibria and elastic properties of a Pyrolite model for the oceanic upper mantle. Tectonophys, 1976, 32: 61–92

    Article  Google Scholar 

  63. Mahoney J J, Sinton J M, Kurz D M, et al. Isotope and trace element characteristics of a superfast spreading ridge: East Pacific Rise, 13–23°S. Earth Planet Sci Lett, 1994, 121: 173–93

    Article  Google Scholar 

  64. Batiza R, Vanko D A. Petrology of young Pacific seamounts. J Geophys Res, 1984, 89: 11235–11260

    Article  Google Scholar 

  65. Niu Y L. Generation and evolution of basaltic magmas: Some basic concepts and a hypothesis for the origin of the Mesozoic and Cenozoic volcanism in eastern China. Geol J China Univ, 2005, 11: 9–46

    Google Scholar 

  66. Niu Y L. Continental lithospheric thinning results from hydration weakening, not “delamination”, and is a special consequence of plate tectonics, 2006, http://www.mantleplumes.org/Hydration.html

  67. Simons F J, Zielhuis A, van der Hilst R D. The deep structure of the Australian continent from surface wave tomography. Lithos, 1999, 48: 17–43

    Article  Google Scholar 

  68. Kárason H, van der Hilst R. Constraints on mantle convection from seismic tomography. Geophys Monogr, 2000, 121: 277–288

    Google Scholar 

  69. Huang J, Zhao D. High-resolution mantle tomography of China and surrounding regions. J Geophys Res, 2006, 111: B09305, doi: 10.1029/2005JB004066

    Article  Google Scholar 

  70. Yaxley G M, Green D H, Kamenetsky V. Carbonatite metasomatism in the Southeastern Australian Lithosphere. J Petrol, 1998, 39: 1917–1930

    Article  Google Scholar 

  71. Presnall D C, Gudfinnsson G H. Carbonate-rich melts in the oceanic low-velocity zone and deep mantle. Geol Soc Amer Spec Paper, 2005, 388: 207–216

    Google Scholar 

  72. Dasgupta R, Hirschmann M M, Smith N D. Water follows Carbon: CO2 incites deep silicate melting and dehydration beneath mid-ocean ridges. Geology, 2007, 35: 135–138

    Article  Google Scholar 

  73. Ionov D A, Dupuy C, O’Reilly S Y, et al. Carbonated peridotite xenoliths from Spitsbergen—implications for trace-element signature of mantle carbonate metasomatism. Earth Planet Sci Lett, 1993, 119: 283–297

    Article  Google Scholar 

  74. Hou Z Q, Tian S H, Yuan Z X, et al. The Himalayan collision zone carbonatites in western Sichuan, SW China: Petrogenesis, mantle source and tectonic implication. Earth Planet Sci Lett, 2006, 244: 234–250

    Article  Google Scholar 

  75. Hirschmann M M. Water, melting, and the deep earth H2O cycle. Annu Rev Earth Planet Sci, 2006, 34: 629–653

    Article  Google Scholar 

  76. Niu Y L. Bulk-rock major and trace element compositions of abyssal peridotites: Implications for mantle melting, melt extraction and post-melting processes beneath ocean ridges. J Petrol, 2004, 45: 2423–2458

    Article  Google Scholar 

  77. White W M. Sources of oceanic basalts—radiogenic isotopic evidence. Geology, 1985, 13: 115–118

    Article  Google Scholar 

  78. Hart S R, Hauri E H, Oschmann L A, et al. Mantle plumes and entrainment: Isotopic evidence. Science, 1992, 256: 517–520

    Article  Google Scholar 

  79. Dickin A P. Radiogenic Isotope Geology. New York: Cambridge Universito Press, 1997

    Google Scholar 

  80. Tatsumi, Y. The Subduction Factory: How it operates on Earth. GSA Today, 2005, 15: 4–10

    Article  Google Scholar 

  81. Elliott T. Tracers of the slab. Geophys Monogr, 2003, 238: 23–45

    Google Scholar 

  82. Hirschmann M M, Stolper E M. A possible role for garnet pyroxenite in the origin of the ‘garnet signature’ in MORB. Contrib Mineral Petrol, 1996, 124: 185–208

    Article  Google Scholar 

  83. Stracke A, Zindler A, Salters V J M, et al. Theistareykir revisited. Geochem. Geophys. Geosyst, 2003, 4, doi: 10.1029/2001GC000201

  84. Regelous M, Niu Y L, Wendt J I, et al. An 800 Ka record of the geochemistry of magmatism on the East Pacific Rise at 10°30′N: Insights into magma chamber processes beneath a fast-spreading ocean ridge. Earth Planet Sci Lett, 1999, 168: 45–63

    Article  Google Scholar 

  85. Regelous M, Niu Y L, Abouchami W. Shallow origin for South Atlantic Dupal Anomaly from lower continental crust: Geochemical evidence from the Mid-Atlantic Ridge at 26°S. Lithos, 2009, 112: 57–72

    Article  Google Scholar 

  86. Wendt J I, Regelous M, Niu Y L, et al. Geochemistry of lavas from the Garrett Transform Fault: insights into mantle heterogeneity beneath the eastern Pacific. Earth Planet Sci Lett, 1999, 173: 271–284

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaoling Niu.

About this article

Cite this article

Niu, Y. Some basic concepts and problems on the petrogenesis of intra-plate ocean island basalts. Chin. Sci. Bull. 54, 4148–4160 (2009). https://doi.org/10.1007/s11434-009-0668-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-009-0668-3

Keywords

Navigation