Skip to main content
Log in

Three new megastigmanes from the leaves of Annona muricata

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

Three new megastigmanes (13), named annoionols A and B (1, 2) and annoionoside (3), were isolated from the leaves of Annona muricata L. (Annonaceae) together with 14 known compounds (417). Among the known compounds, annoionol C (4) was isolated from a natural source for the first time. The structures of all compounds were elucidated by spectroscopic and chemical analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lannuzel A, Höglinger GU, Champy P, Michel PP, Hirsch EC, Ruberg M (2006) Is atypical parkinsonism in the Caribbean caused by the consumption of Annonaceae? J Neural Transm Suppl 70:153–157

    Article  PubMed  CAS  Google Scholar 

  2. Shitamoto J, Matsunami K, Otsuka H, Shinzato T, Takeda Y (2010) Elaeocarpionoside, a megastigmane glucoside from the leaves of Elaeocarpus japonicus Sieb. et Zucc. J Nat Med 64:104–108

    Article  PubMed  CAS  Google Scholar 

  3. Liu YP, Cai XH, Feng T, Li Y, Li XN, Luo XD (2011) Triterpene and sterol derivatives from the roots of Breynia fruticosa. J Nat Prod 74:1161–1168

    Article  PubMed  CAS  Google Scholar 

  4. Kusumi T, Ooi T, OhkuboY YabuuchiT (2006) The modified Mosher’s method and the sulfoximine method. Bull Chem Soc Jpn 79:965–980

    Article  CAS  Google Scholar 

  5. Kasai R, Suzuno M, Asakawa J, Tanaka O (1977) Carbon-13 chemical shifts of isoprenoid-β-d-glucopyranosides and -β-d-mannopyranosides. Stereochemical influences of aglycone alcohols. Tetrahedron Lett 18:175–178

    Article  Google Scholar 

  6. Sueyoshi E, Liu H, Matsunami K, Otsuka H, Shinzato T, Aramoto M, Takeda Y (2006) Bridelionosides A–F: megastigmane glucosides from Bridelia glauca f. balansae. Phytochemistry 67:2483–2493

    Article  PubMed  CAS  Google Scholar 

  7. Pasi S, Aligiannis N, Pratsinis H, Skaltsounis AL, Chinou LB (2009) Rhusonoside A, a new megastigmane glycoside from Rhus sylvestris, increases the function of osteoblastic MC3T3-E1 cells. Planta Med 75:163–167

    Article  PubMed  CAS  Google Scholar 

  8. Xu Y, Feng T, Cai XH, Luo XD (2009) A new C13-norisoprenoid from leaves of Alstonia scholaris. Zhongguo Tianran Yaowu 7:21–23

    Google Scholar 

  9. Zhang Z, Zhen W, Ji YP, Zhao Y, Wang CG, Hu JF (2010) Gynostemosides A–E, megastigmane glycosides from Gynostemma pentaphyllum. Phytochemistry 71:693–700

    Article  PubMed  CAS  Google Scholar 

  10. Mei W, Dai H, Wu D (2006) Isolation and identification of chemical constituents from Cephalomappa sinensis. Zhongguo Yaowu Huaxue Zazhi 16:240–243

    CAS  Google Scholar 

  11. Perez C, Trujillo JM, Almonacid LN, Navarro E, Alonso SJ (1996) New C13-norisoprenoids from Apollonias barbujana. Nat Prod Lett 8:1–6

    Article  CAS  Google Scholar 

  12. Kuang HX, Yang BY, Xia YG, Feng WS (2008) Chemical constituents from the flowers of Datura metel L. Arch Pharm Res 31:1094–1097

    Article  PubMed  CAS  Google Scholar 

  13. Otsuka H, Yao M, Kamada K, Takeda Y (1995) Alangionosides G–M: glycosides of megastigmane derivatives from the leaves of Alangium premnifolium. Chem Pharm Bull 43:754–759

    Article  PubMed  CAS  Google Scholar 

  14. Kawakami S, Matsunami K, Otsuka H, Shinzato T, Takeda Y (2011) Crotonionosides A–G: megastigmane glycosides from leaves of Croton cascarilloides Raeuschel. Phytochemistry 72:147–153

    Article  PubMed  CAS  Google Scholar 

  15. Yu Q, Otsuka H, Hirata E, Shinzato T, Takeda Y (2002) Turpinionosides A–E: megastigmane glucosides from leaves of Turpinia ternata Nakai. Chem Pharm Bull 50:640–644

    Article  PubMed  CAS  Google Scholar 

  16. Umehara K, Hattori I, Miyase T, Ueno A, Hara S, Kageyama C (1988) Studies on the constituents of leaves of Citrus unshiu Marcov. Chem Pharm Bull 36:5004–5008

    Article  CAS  Google Scholar 

  17. Matsunami K, Otsuka H, Takeda Y (2010) Structural revisions of blumenol C glucoside and byzantionoside B. Chem Pharm Bull 58:438–441

    Article  PubMed  CAS  Google Scholar 

  18. Mori K, Khlebnikov V (1993) Carotenoids and degraded carotenoids, VIII – Synthesis of (+)-dihydroactinidiolide, (+)- and (−)-actinidiolide, (+)- and (−)-loliolide as well as (+)- and (−)-epiloliolide. Liebigs Ann Chem 1993: 77–82

  19. Kim, Lee SK, Kim CS, Kim KS, Moon DC (2004) Phytochemical constituents of Carpesium macrocephalum F(R). et S(AV). Arch Pharm Res 27:1029–1033

    Article  PubMed  CAS  Google Scholar 

  20. Someya Y, Kobayashi A, Kubota K (2001) Isolation and identification of trans-2- and trans-3-hydroxy-1,8-cineole glucosides from Alpinia galanga. Biosci Biotechnol Biochem 65:950–953

    Article  PubMed  CAS  Google Scholar 

  21. Mizutani K, Yuda M, Tanaka O, Saruwatari Y, Fuwa T, Jia MR, Ling YK, Pu XF (1988) Chemical studies on the Chinese traditional medicine, dangshen. I. Isolation of (Z)-3- and (E)-2-hexenyl β-d-glucosides. Chem Pharm Bull 36:2689–2690

    Article  PubMed  CAS  Google Scholar 

  22. Ly TN, Shimoyamada M, Yamauchi R (2006) Isolation and characterization of rosmarinic acid oligomers in Celastrus hindsii Benth leaves and their antioxidative activity. J Agric Food Chem 54:3786–3793

    Article  PubMed  CAS  Google Scholar 

  23. Beck MA, Haberlein H (1999) Flavonol glycosides from Eschscholtzia californica. Phytochemistry 50:329–332

    Article  PubMed  CAS  Google Scholar 

  24. Brasseur T, Angenot L (1986) Flavonol glycosides from leaves of Strychnos variabilis. Phytochemistry 25:563–564

    Article  CAS  Google Scholar 

  25. Fukui Y, Tanaka Y, Kusumi T, Iwashita T, Nomoto K (2003) A rationale for the shift in colour towards blue in transgenic carnation flowers expressing the flavonoid 3′,5′-hydroxylase gene. Phytochemistry 63:15–23

    Article  PubMed  CAS  Google Scholar 

  26. Matsunami K, Takamori I, Shinzato T, Aramoto M, Kondo K, Otsuka H, Takeda Y (2006) Radical-scavenging activities of new megastigmane glucosides from Macaranga tanarius (L.) Müll.-Arg. Chem Pharm Bull 54:1403–1407

    Article  PubMed  CAS  Google Scholar 

  27. Yen CT, Wu CC, Lee JC, Chen SL, Morris NSL, Hsieh PW, Wu YC (2010) Cytotoxic N-(fluorenyl-9-methoxycarbonyl) (Fmoc)-dipeptides: Structure–activity relationships and synergistic studies. Eur J Med Chem 45:2494–2502

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the access to the superconducting NMR instrument (JEOL ECA-600) and the Applied Biosystem QSTAR XL system ESI (NanoSpray) mass spectrometer at the Natural Science Center for Basic Research and Development (N-BARD), Hiroshima University. This work was supported in part by Grants-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology of Japan (Nos. 22590006 and 23590130), and the Ministry of Health, Labour and Welfare. Thanks are also due to the Research Foundation for Pharmaceutical Sciences and the Takeda Science Foundation for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideaki Otsuka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsushige, A., Matsunami, K., Kotake, Y. et al. Three new megastigmanes from the leaves of Annona muricata . J Nat Med 66, 284–291 (2012). https://doi.org/10.1007/s11418-011-0583-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-011-0583-1

Keywords

Navigation