Skip to main content
Log in

Age-related cataract in dogs: a biomarker for life span and its relation to body size

  • Published:
AGE Aims and scope Submit manuscript

Abstract

Clinical data from 72 dog breeds of varying size and life expectancy were grouped according to breed body mass and tested for prevalence at ages 4 to 5, ages 7 to 10, and lifetime incidence of non-hereditary, age-related cataract (ARC). The incidence of ARC was found to be directly related to the relative life expectancies in the breed groups: The smallest dog breeds had a lower ARC prevalence between ages 4 and 5 than mid-size breeds and these, in turn, a lower prevalence than the giant breeds. A similar sequence was evident for ages 7 to 10 and for overall lifetime incidence of ARC. These differences became more significant when comparing small and giant breeds only. We could also confirm the inverse relationship between body size and life expectancy in these same sets of dog breeds. Our results show that body size, life expectancy, and ARC incidence are interrelated in dogs. Given that ARC has been shown to be at least partially caused by oxidative damage to lens epithelial cells and the internal lens, we suggest that it can be considered not only as a general biomarker for life expectancy in the canine and possibly other species, but also for the systemic damages produced by reactive oxygen species. This suggests new approaches to examine the gene expression pathways affecting the above-noted linkages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ackermann L (1999) Cataracts. In: The genetic connection—a guide to health problems in purebred dogs. American Animal Hospital Association, Lakewood, 147 ff

    Google Scholar 

  • Anonymous (1996–2005). Canine Eye Registry Foundation (CERF) Database, Veterinary Medical Database (VMDB).

  • Austad SN (2005) Diverse aging rates in metazoans: targets for functional genomics. Mech Ageing Dev 126(1):43–49

    Article  PubMed  CAS  Google Scholar 

  • Babizhayev MA, Dainyak BA et al (1992) ESR spin label and ultrastructural monitoring of protein-lipid interactions in the lens fiber-cell plasma membranes in relation to human ageing and cataractogenesis. Mech Ageing Dev 64(1–2):133–147

    Article  PubMed  CAS  Google Scholar 

  • Bartke A, Brown-Borg H (2004) Life extension in the dwarf mouse. Curr Top Dev Biol 63:189–225

    Article  PubMed  CAS  Google Scholar 

  • Bartke A, Chandrashekar V et al (2003) Insulin-like growth factor 1 (IGF-1) and aging: controversies and new insights. Biogerontology 4(1):1–8

    Article  PubMed  CAS  Google Scholar 

  • Brennan LA, Kantorow M (2009) Mitochondrial function and redox control in the aging eye: role of MsrA and other repair systems in cataract and macular degenerations. Exp Eye Res 88(2):195–203

    Article  PubMed  CAS  Google Scholar 

  • Bronson RT (1982) Variation in age at death of dogs of different sexes and breeds. Am J Vet Res 43(11):2057–2059

    PubMed  CAS  Google Scholar 

  • Brosnahan MM, Paradis MR (2003) Demographic and clinical characteristics of geriatric horses: 467 cases (1989–1999). J Am Vet Med Assoc 223(1):93–98

    Article  PubMed  Google Scholar 

  • Coile D (2005) Encyclopedia of dog breeds. Hauppauge, NY, Barron’s

    Google Scholar 

  • Davies KJ (1995) Oxidative stress: the paradox of aerobic life. Biochem Soc Symp 61:1–31

    PubMed  CAS  Google Scholar 

  • Deeb B, Wolf N (1994) Studying longevity and morbidity in giant and small breeds of dogs. Vet Med 89:702–713, Aug 1994 Sup Geriatric Med

    Google Scholar 

  • Eigenmann JE, Amador A et al (1988) Insulin-like growth factor I levels in proportionate dogs, chondrodystrophic dogs and in giant dogs. Acta Endocrinol Copenh 118(1):105–108

    PubMed  CAS  Google Scholar 

  • Galis F, Van der Sluijs I et al (2007) Do large dogs die young? J Exp Zool B Mol Dev Evol 308(2):119–126

    Article  PubMed  Google Scholar 

  • Gelatt KN, Mackay EO (2005) Prevalence of primary breed-related cataracts in the dog in North America. Vet Ophthalmol 8(2):101–111

    Article  PubMed  Google Scholar 

  • Greer KA, Canterberry SC et al (2007) Statistical analysis regarding the effects of height and weight on life span of the domestic dog. Res Vet Sci 82(2):208–214

    Article  PubMed  Google Scholar 

  • Lauten SD (2006) Nutritional risks to large-breed dogs: from weaning to the geriatric years. Vet Clin N Am Small Anim Pract 36(6):1345–1359, viii

    Article  Google Scholar 

  • Miller RA, Chrisp C et al (2000) Differential longevity in mouse stocks selected for early life growth trajectory. J Gerontol A Biol Sci Med Sci 55(9):B455–B461

    Article  PubMed  CAS  Google Scholar 

  • Miller RA, Harper JM et al (2002) Big mice die young: early life body weight predicts longevity in genetically heterogeneous mice. Aging Cell 1(1):22–29

    Article  PubMed  CAS  Google Scholar 

  • Papaconstantinou J (2009) Insulin/IGF-1 and ROS signaling pathway cross-talk in aging and longevity determination. Mol Cell Endocrinol 299(1):89–100

    Article  PubMed  CAS  Google Scholar 

  • Patronek GJ, Waters DJ et al (1997) Comparative longevity of pet dogs and humans: implications for gerontology research. J Gerontol A Biol Sci Med Sci 52(3):B171–B178

    Article  PubMed  CAS  Google Scholar 

  • Pendergrass WR, Li Y et al (1993) Decrease in cellular replicative potential in "giant" mice transfected with the bovine growth hormone gene correlates to shortened life span. J Cell Physiol 156(1):96–103

    Article  PubMed  CAS  Google Scholar 

  • Pendergrass WR, Penn PE et al (2006) Cellular debris and ROS in age-related cortical cataract are caused by inappropriate involution of the surface epithelial cells into the lens cortex. Mol Vis 12:712–724

    PubMed  CAS  Google Scholar 

  • Reddy VN, Giblin FJ et al (2001) Glutathione peroxidase-1 deficiency leads to increased nuclear light scattering, membrane damage, and cataract formation in gene-knockout mice. Invest Ophthalmol Vis Sci 42(13):3247–3255

    PubMed  CAS  Google Scholar 

  • Samaras TT (2009) Should we be concerned over increasing body height and weight? Exp Gerontol 44(1–2):83–92

    Article  PubMed  Google Scholar 

  • Samaras TT, Elrick H et al (2003) Birthweight, rapid growth, cancer, and longevity: a review. J Natl Med Assoc 95(12):1170–1183

    PubMed  Google Scholar 

  • Samaras TT, Storms LH (1992) Impact of height and weight on life span. Bull World Health Organ 70(2):259–267

    PubMed  CAS  Google Scholar 

  • Sanz A, Gredilla R et al (2005) Effect of insulin and growth hormone on rat heart and liver oxidative stress in control and caloric restricted animals. Biogerontology 6(1):15–26

    Article  PubMed  CAS  Google Scholar 

  • Slatter DH, Bradley JS et al (1983) Hereditary cataracts in canaries. J Am Vet Med Assoc 183(8):872–874

    PubMed  CAS  Google Scholar 

  • Speakman JR (2005) Body size, energy metabolism and lifespan. J Exp Biol 208(Pt 9):1717–1730

    Article  PubMed  Google Scholar 

  • Spector A (1995) Oxidative stress-induced cataract: mechanism of action. FASEB J 9(12):1173–1182

    PubMed  CAS  Google Scholar 

  • Suh Y, Atzmon G et al (2008) Functionally significant insulin-like growth factor I receptor mutations in centenarians. Proc Natl Acad Sci USA 105(9):3438–3442

    Article  PubMed  CAS  Google Scholar 

  • Sutter NB, Bustamante CD et al (2007) A single IGF1 allele is a major determinant of small size in dogs. Science 316(5821):112–115

    Article  PubMed  CAS  Google Scholar 

  • Taguchi A, White MF (2008) Insulin-like signaling, nutrient homeostasis, and life span. Annu Rev Physiol 70:191–212

    Article  PubMed  CAS  Google Scholar 

  • Tryfonidou MA, Holl MS et al (2003) Hormonal regulation of calcium homeostasis in two breeds of dogs during growth at different rates. J Anim Sci 81(6):1568–1580

    PubMed  CAS  Google Scholar 

  • van Heemst D, Beekman M et al (2005) Reduced insulin/IGF-1 signalling and human longevity. Aging Cell 4(2):79–85

    Article  PubMed  Google Scholar 

  • Williams DL, Heath MF et al (2004) Prevalence of canine cataract: preliminary results of a cross-sectional study. Vet Ophthalmol 7(1):29–35

    Article  PubMed  CAS  Google Scholar 

  • Wolf N, Penn P et al (2005) Age-related cataract progression in five mouse models for anti-oxidant protection or hormonal influence. Exp Eye Res 81(3):276–285

    Article  PubMed  CAS  Google Scholar 

  • Xie L, Chen H et al (2007) Elevated insulin signaling disrupts the growth and differentiation pattern of the mouse lens. Mol Vis 13:397–407

    PubMed  CAS  Google Scholar 

  • Zubenko GS, Zubenko WN et al (2007) Reduced age-related cataracts among elderly persons who reach age 90 with preserved cognition: a biomarker of successful aging? J Gerontol A Biol Sci Med Sci 62(5):500–506

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors express their appreciation to Ms. Debbie Folks-Huber and CERF for help in obtaining the data for all breeds in the CERF listing and censoring of the data for the limitations listed above. This study was supported by the Swiss National Science Foundation (project number PBBEB-119243) and by NIH grant R01 EY 11733.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norman S. Wolf.

About this article

Cite this article

Urfer, S.R., Greer, K. & Wolf, N.S. Age-related cataract in dogs: a biomarker for life span and its relation to body size. AGE 33, 451–460 (2011). https://doi.org/10.1007/s11357-010-9158-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-010-9158-4

Keywords

Navigation