Skip to main content

Advertisement

Log in

New lines of GFP transgenic rats relevant for regenerative medicine and gene therapy

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

Adoptive cell transfer studies in regenerative research and identification of genetically modified cells after gene therapy in vivo require unequivocally identifying and tracking the donor cells in the host tissues, ideally over several days or for up to several months. The use of reporter genes allows identifying the transferred cells but unfortunately most are immunogenic to wild-type hosts and thus trigger rejection in few days. The availability of transgenic animals from the same strain that would express either high levels of the transgene to identify the cells or low levels but that would be tolerant to the transgene would allow performing long-term analysis of labelled cells. Herein, using lentiviral vectors we develop two new lines of GFP-expressing transgenic rats displaying different levels and patterns of GFP-expression. The “high-expresser” line (GFPhigh) displayed high expression in most tissues, including adult neurons and neural precursors, mesenchymal stem cells and in all leukocytes subtypes analysed, including myeloid and plasmacytoid dendritic cells, cells that have not or only poorly characterized in previous GFP-transgenic rats. These GFPhigh-transgenic rats could be useful for transplantation and immunological studies using GFP-positive cells/tissue. The “low-expresser” line expressed very low levels of GFP only in the liver and in less than 5% of lymphoid cells. We demonstrate these animals did not develop detectable humoral and cellular immune responses against both transferred GFP-positive splenocytes and lentivirus-mediated GFP gene transfer. Thus, these GFP-transgenic rats represent useful tools for regenerative medicine and gene therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aitman TJ, Critser JK, Cuppen E, Dominiczak A, Fernandez-Suarez XM, Flint J, Gauguier D, Geurts AM, Gould M, Harris PC, Holmdahl R, Hubner N, Izsvak Z, Jacob HJ, Kuramoto T, Kwitek AE, Marrone A, Mashimo T, Moreno C, Mullins J, Mullins L, Olsson T, Pravenec M, Riley L, Saar K, Serikawa T, Shull JD, Szpirer C, Twigger SN, Voigt B, Worley K (2008) Progress and prospects in rat genetics: a community view. Nat Genet 40:516–522

    Article  CAS  PubMed  Google Scholar 

  • Azizi SA, Stokes D, Augelli BJ, DiGirolamo C, Prockop DJ (1998) Engraftment and migration of human bone marrow stromal cells implanted in the brains of albino rats-similarities to astrocyte grafts. Proc Natl Acad Sci USA 95:3908–3913

    Article  CAS  PubMed  Google Scholar 

  • Barry FP, Murphy JM (2004) Mesenchymal stem cells: clinical applications and biological characterization. Int J Biochem Cell Biol 36:568–584

    Article  CAS  PubMed  Google Scholar 

  • Blanco P, Palucka AK, Pascual V, Banchereau J (2008) Dendritic cells and cytokines in human inflammatory and autoimmune diseases. Cytokine Growth Factor Rev 19:41–52

    Article  CAS  PubMed  Google Scholar 

  • Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC (1994) Green fluorescent protein as a marker for gene expression. Science 263:802–805

    Article  CAS  PubMed  Google Scholar 

  • Cronkhite JT, Norlander C, Furth JK, Levan G, Garbers DL, Hammer RE (2005) Male and female germline specific expression of an EGFP reporter gene in a unique strain of transgenic rats. Dev Biol 284(1):171–183

    Article  CAS  PubMed  Google Scholar 

  • Francis JS, Olariu A, Kobayashi E, Leone P (2007) GFP-transgenic Lewis rats as a cell source for oligodendrocyte replacement. Exp Neurol 205:177–189

    Article  CAS  PubMed  Google Scholar 

  • Gambotto A, Dworacki G, Cicinnati V, Kenniston T, Steitz J, Tuting T, Robbins PD, DeLeo AB (2000) Immunogenicity of enhanced green fluorescent protein (EGFP) in BALB/c mice: identification of an H2-Kd-restricted CTL epitope. Gene Ther 7:2036–2040

    Article  CAS  PubMed  Google Scholar 

  • Grieshammer U, McGrew MJ, Rosenthal N (1995) Role of methylation in maintenance of positionally restricted transgene expression in developing muscle. Development 121:2245–2253

    CAS  PubMed  Google Scholar 

  • Gritti A, Parati EA, Cova L, Frolichsthal P, Galli R, Wanke E, Faravelli L, Morassutti DJ, Roisen F, Nickel DD, Vescovi AL (1996) Multipotential stem cells from the adult mouse brain proliferate and self-renew in response to basic fibroblast growth factor. J Neurosci 16:1091–1100

    CAS  PubMed  Google Scholar 

  • Hakamata Y, Tahara K, Uchida H, Sakuma Y, Nakamura M, Kume A, Murakami T, Takahashi M, Takahashi R, Hirabayashi M, Ueda M, Miyoshi I, Kasai N, Kobayashi E (2001) Green fluorescent protein-transgenic rat: a tool for organ transplantation research. Biochem Biophys Res Commun 286:779–785

    Article  CAS  PubMed  Google Scholar 

  • Hakamata Y, Murakami T, Kobayashi E (2006) “Firefy rats” as an organ/cellular source for long-term in vivo bioluminescent imaging. Transplantation 81:1179–1184

    Article  PubMed  Google Scholar 

  • Hamra FK, Gatlin J, Chapman KM, Grellhesl DM, Garcia JV, Hammer RE, Garbers DL (2002) Production of transgenic rats by lentiviral transduction of male germ-line stem cells. Proc Natl Acad Sci USA 99(23):14931–14936

    Article  CAS  PubMed  Google Scholar 

  • Hofmann A, Kessler B, Ewerling S, Kabermann A, Brem G, Wolf E, Pfeifer A (2006) Epigenetic regulation of lentiviral transgene vectors in a large animal model. Mol Ther 13:59–66

    Article  CAS  PubMed  Google Scholar 

  • Hubert FX, Voisine C, Louvet C, Heslan M, Josien R (2004) Rat plasmacytoid dendritic cells are an abundant subset of MHC class II + CD4 + CD11b-OX62- and type I IFN-producing cells that exhibit selective expression of Toll-like receptors 7 and 9 and strong responsiveness to CpG. J Immunol 172:7485–7494

    CAS  PubMed  Google Scholar 

  • Inoue H, Ohsawa I, Murakami T, Kimura A, Hakamata Y, Sato Y, Kaneko T, Takahashi M, Okada T, Ozawa K, Francis J, Leone P, Kobayashi E (2005) Development of new inbred transgenic strains of rats with LacZ or GFP. Biochem Biophys Res Commun 329:288–295

    Article  CAS  PubMed  Google Scholar 

  • Itakura E, Odaira K, Yokoyama K, Osuna M, Hara T, Inoue K (2007) Generation of transgenic rats expressing green fluorescent protein in S-100beta-producing pituitary folliculo-stellate cells and brain astrocytes. Endocrinology 148(4):1518–1523

    Article  CAS  PubMed  Google Scholar 

  • Ito T, Suzuki A, Imai E, Okabe M, Hori M (2001) Bone marrow is a reservoir of repopulating mesangial cells during glomerular remodeling. J Am Soc Nephrol 12(12):2625–2635

    CAS  PubMed  Google Scholar 

  • Jahner D, Stuhlmann H, Stewart CL, Harbers K, Lohler J, Simon I, Jaenisch R (1982) De novo methylation and expression of retroviral genomes during mouse embryogenesis. Nature 298:623–628

    Article  CAS  PubMed  Google Scholar 

  • Karpen GH (1994) Position-effect variegation and the new biology of heterochromatin. Curr Opin Genet Dev 4:281–291

    Article  CAS  PubMed  Google Scholar 

  • Lendahl U, Zimmerman LB, McKay RD (1990) CNS stem cells express a new class of intermediate filament protein. Cell 60:585–595

    Article  CAS  PubMed  Google Scholar 

  • Lois C, Hong EJ, Pease S, Brown EJ, Baltimore D (2002) Germline transmission and tissue-specific expression of transgenes delivered by lentiviral vectors. Science 295:868–872

    Article  CAS  PubMed  Google Scholar 

  • Manfra DJ, Chen SC, Yang TY, Sullivan L, Wiekowski MT, Abbondanzo S, Vassileva G, Zalamea P, Cook DN, Lira SA (2001) Leukocytes expressing green fluorescent protein as novel reagents for adoptive cell transfer and bone marrow transplantation studies. Am J Pathol 158:41–47

    CAS  PubMed  Google Scholar 

  • Menoret S, Aubert D, Tesson L, Braudeau C, Pichard V, Ferry N, Anegon I (2002) lacZ transgenic rats tolerant for beta-galactosidase: recipients for gene transfer studies using lacZ as a reporter gene. Hum Gene Ther 13:1383–1390

    Article  CAS  PubMed  Google Scholar 

  • Michalkiewicz M, Michalkiewicz T, Geurts AM, Roman RJ, Slocum GR, Singer O, Weihrauch D, Greene AS, Kaldunski M, Verma IM, Jacob HJ, Cowley AW Jr (2007) Efficient transgenic rat production by a lentiviral vector. Am J Physiol Heart Circ Physiol 293:H881–H894

    Article  CAS  PubMed  Google Scholar 

  • Mothe AJ, Kulbatski I, van Bendegem RL, Lee L, Kobayashi E, Keating A, Tator CH (2005) Analysis of green fluorescent protein expression in transgenic rats for tracking transplanted neural stem/progenitor cells. J Histochem Cytochem 53(10):1215–1226

    Article  CAS  PubMed  Google Scholar 

  • Nguyen TH, Bellodi-Privato M, Aubert D, Pichard V, Myara A, Trono D, Ferry N (2005) Therapeutic lentivirus-mediated neonatal in vivo gene therapy in hyperbilirubinemic Gunn rats. Mol Ther 12:852–859

    Article  CAS  PubMed  Google Scholar 

  • Peche H, Trinite B, Martinet B, Cuturi MC (2005) Prolongation of heart allograft survival by immature dendritic cells generated from recipient type bone marrow progenitors. Am J Transplant 5:255–267

    Article  PubMed  Google Scholar 

  • Pfeifer A (2006) Lentiviral transgenesis-a versatile tool for basic research and gene therapy. Curr Gene Ther 6:535–542

    Article  CAS  PubMed  Google Scholar 

  • Pfeifer A, Ikawa M, Dayn Y, Verma IM (2002) Transgenesis by lentiviral vectors: lack of gene silencing in mammalian embryonic stem cells and preimplantation embryos. Proc Natl Acad Sci USA 99:2140–2145

    Article  CAS  PubMed  Google Scholar 

  • Prasher DC, Eckenrode VK, Ward WW, Prendergast FG, Cormier MJ (1992) Primary structure of the Aequorea victoria green-fluorescent protein. Gene 111:229–233

    Article  CAS  PubMed  Google Scholar 

  • Remy S, Canova C, Nerrière-Daguin V, Martin C, Melchior B, Neveu I, Charreau B, Soulillou J-P, Brachet P (2001) Different mechanisms mediate the rejection of porcine neurons or endothelial cells transplanted into the rat striatum. Xenotransplantation 8:136–148

    Article  CAS  PubMed  Google Scholar 

  • Rosenzweig M, Connole M, Glickman R, Yue SP, Noren B, DeMaria M, Johnson RP (2001) Induction of cytotoxic T lymphocyte and antibody responses to enhanced green fluorescent protein following transplantation of transduced CD34(+) hematopoietic cells. Blood 97:1951–1959

    Article  CAS  PubMed  Google Scholar 

  • Rossignol J, Boyer C, Thinard R, Remy S, Dugast AS, Dubayle D, Dey ND, Boeffard F, Delecrin J, Heymann D, Vanhove B, Anegon I, Naveilhan P, Dunbar GL, Lescaudron L (2009) Mesenchymal stem cells induce a weak immune response in the rat striatum after allo or xenotransplantation. J Cell Mol Med. doi:10.1111/j.1582-4934.2008.00657.x

    Google Scholar 

  • Sawamoto K, Nakao N, Kakishita K, Ogawa Y, Toyama Y, Yamamoto A, Yamaguchi M, Mori K, Goldman SA, Itakura T, Okano H (2001) Generation of dopaminergic neurons in the adult brain from mesencephalic precursor cells labeled with a nestin-GFP transgene. J Neurosci 21(11):3895–3903

    CAS  PubMed  Google Scholar 

  • Sergent-Tanguy S, Veziers J, Bonnamain V, Boudin H, Neveu I, Naveilhan P (2006) Cell surface antigens on rat neural progenitors and characterization of the CD3 (+)/CD3 (−) cell populations. Differentiation 74:530–541

    Article  CAS  PubMed  Google Scholar 

  • Stripecke R, Carmen Villacres M, Skelton D, Satake N, Halene S, Kohn D (1999) Immune response to green fluorescent protein: implications for gene therapy. Gene Ther 6:1305–1312

    Article  CAS  PubMed  Google Scholar 

  • Takahashi M, Hakamata Y, Murakami T, Takeda S, Kaneko T, Takeuchi K, Takahashi R, Ueda M, Kobayashi E (2003) Establishment of lacZ-transgenic rats: a tool for regenerative research in myocardium. Biochem Biophys Res Commun 305:904–908

    Article  CAS  PubMed  Google Scholar 

  • van den Brandt J, Wang D, Kwon SH, Heinkelein M, Reichardt HM (2004) Lentivirally generated eGFP-transgenic rats allow efficient cell tracking in vivo. Genesis 39:94–99

    Article  PubMed  Google Scholar 

  • Voisine C, Hubert FX, Trinite B, Heslan M, Josien R (2002) Two phenotypically distinct subsets of spleen dendritic cells in rats exhibit different cytokine production and T cell stimulatory activity. J Immunol 169:2284–2291

    CAS  PubMed  Google Scholar 

  • Zhang F, Thornhill SI, Howe SJ, Ulaganathan M, Schambach A, Sinclair J, Kinnon C, Gaspar HB, Antoniou M, Thrasher AJ (2007) Lentiviral vectors containing an enhancer-less ubiquitously acting chromatin opening element (UCOE) provide highly reproducible and stable transgene expression in hematopoietic cells. Blood 110:1448–1457

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We wish to thank Dr. Xian Liang Li, Dr. Laetitia Gautreau and Dr. Thomas Condamine for their technical assistance (INSERM U643, Nantes, France). This work was supported by funding from, La Région Pays de la Loire through the IMBIO program, Biogenouest and Fondation Progreffe.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. Remy or I. Anegon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Remy, S., Tesson, L., Usal, C. et al. New lines of GFP transgenic rats relevant for regenerative medicine and gene therapy. Transgenic Res 19, 745–763 (2010). https://doi.org/10.1007/s11248-009-9352-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-009-9352-2

Keywords

Navigation