Skip to main content
Log in

Resolution Effect: An Error Correction Model for Intrinsic Permeability of Porous Media Estimated from Lattice Boltzmann Method

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

In digital rock physics, the intrinsic permeability of a porous rock sample can be evaluated from its micro-computed tomography (\(\upmu\)-CT) image through lattice Boltzmann method (LBM) simulation. The LBM permeability evaluation has been increasingly adopted by the oil and gas industries, especially when the access to core samples is limited. In order to accurately evaluate the permeability of porous media, this digital approach requires high-quality \(\upmu\)-CT images with sufficient resolution and size. In practice, however, the LBM simulation is often performed using images of reduced resolution, due to limitations in computing power and simulation time. As a result, the permeability results obtained are often compromised with significant errors, known as the resolution effect. In this study, the resolution effect is quantitatively investigated to identify the primary causes of error, based on which an error correction model for the LBM permeability evaluation is proposed. The model uses such geometric attributes as connected porosity, specific surface area and diffusion tortuosity to quantify the resolution effect and achieve error correction. Demonstrated on various types of porous media including sandstone, carbonate rock, sand pack, synthesis silica, etc., the proposed error correction model can effectively correct the errors in LBM permeability evaluation due to the resolution effect. Our error correction model makes image resolution reduction more meaningful and creditable for LBM permeability evaluation of porous media, thereby supporting its adoption in practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • Alyafei, N., Raeini, A.Q., Paluszny, A., Blunt, M.J.: A sensitivity study of the effect of image resolution on predicted petrophysical properties. Transp. Porous Media 110(1), 157–169 (2015)

    Google Scholar 

  • Andrä, H., Combaret, N., Dvorkin, J., Glatt, E., Han, J., Kabel, M., Keehm, Y., Krzikalla, F., Lee, M., Madonna, C., Marsh, M.: Digital rock physics benchmarks—part i: imaging and segmentation. Comput. Geosci. 50, 25–32 (2013)

    Google Scholar 

  • Bear, J.: Dynamics of Fluids in Porous Media. Courier Corporation, Chelmsford (2013)

    Google Scholar 

  • Berg, C.F.: Permeability description by characteristic length, tortuosity, constriction and porosity. Transp. Porous Media 103(3), 381–400 (2014)

    Google Scholar 

  • Blunt, M.J., Bijeljic, B., Dong, H., Gharbi, O., Iglauer, S., Mostaghimi, P., Paluszny, A., Pentland, C.: Pore-scale imaging and modelling. Adv. Water Resour. 51, 197–216 (2013)

    Google Scholar 

  • Borujeni, A.T., Lane, N., Thompson, K., Tyagi, M.: Effects of image resolution and numerical resolution on computed permeability of consolidated packing using lb and fem pore-scale simulations. Comput. Fluids 88, 753–763 (2013)

    Google Scholar 

  • Bourbie, T., Zinszner, B.: Hydraulic and acoustic properties as a function of porosity in fontainebleau sandstone. J. Geophys. Res. Solid Earth 90(B13), 11524–11532 (1985)

    Google Scholar 

  • Burt, P., Adelson, E.: The Laplacian pyramid as a compact image code. IEEE Trans. Commun. 31(4), 532–540 (1983)

    Google Scholar 

  • Chapman, A., Higdon, J.J.: Oscillatory stokes flow in periodic porous media. Phys. Fluids A 4(10), 2099–2116 (1992)

    Google Scholar 

  • Chen, H., Chen, S., Matthaeus, W.H.: Recovery of the Navier–Stokes equations using a lattice-gas Boltzmann method. Phys. Rev. A 45(8), R5339 (1992)

    Google Scholar 

  • Clennell, M.B.: Tortuosity: a guide through the maze. Geol. Soc. Lond. Spec. Publ. 122(1), 299–344 (1997)

    Google Scholar 

  • Cooper, S., Bertei, A., Shearing, P., Kilner, J., Brandon, N.: Taufactor: an open-source application for calculating tortuosity factors from tomographic data. SoftwareX 5, 203–210 (2016)

    Google Scholar 

  • d’Humieres, D.: Multiple-relaxation-time lattice Boltzmann models in three dimensions. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 360(1792), 437–451 (2002)

    Google Scholar 

  • Edie, M.S., Olson, J.F., Burns, D.R., Toksoz, M.N.: The Effect of Image Resolution on Fluid Flow Simulations in Porous Media. Earth Resources Laboratory, Technical report, Massachusetts Institute of Technology (2000)

  • Eshghinejadfard, A., Daróczy, L., Janiga, G., Thévenin, D.: Calculation of the permeability in porous media using the lattice Boltzmann method. Int. J. Heat Fluid Flow 62, 93–103 (2016)

    Google Scholar 

  • Fadnavis, S.: Image interpolation techniques in digital image processing: an overview. Int. J. Eng. Res. Appl. 4(10), 70–73 (2014)

    Google Scholar 

  • Ghanizadeh, A., Clarkson, C., Aquino, S., Ardakani, O., Sanei, H.: Petrophysical and geomechanical characteristics of Canadian tight oil and liquid-rich gas reservoirs: I. Pore network and permeability characterization. Fuel 153, 664–681 (2015)

    Google Scholar 

  • Ginzbourg, I., Adler, P.: Boundary flow condition analysis for the three-dimensional lattice Boltzmann model. J. Phys. II 4(2), 191–214 (1994)

    Google Scholar 

  • Ginzburg, I., d’Humieres, D.: Multireflection boundary conditions for lattice Boltzmann models. Phys. Rev. E 68(6), 066614 (2003)

    Google Scholar 

  • Gooya, R., Bruns, S., Müter, D., Moaddel, A., Harti, R.P., Stipp, S.L.S., Sørensen, H.O.: Effect of tomography resolution on the calculated microscopic properties of porous materials: comparison of sandstone and carbonate rocks. Appl. Phys. Lett. 109(10), 104102 (2016)

    Google Scholar 

  • Grathwohl, P.: Diffusion in Natural Porous Media: Contaminant Transport, Sorption/desorption and Dissolution Kinetics, vol. 1. Springer, Berlin (2012)

    Google Scholar 

  • Guan, K.M., Nazarova, M., Guo, B., Tchelepi, H., Kovscek, A.R., Creux, P.: Effects of image resolution on sandstone porosity and permeability as obtained from x-ray microscopy. Transp. Porous Media 127, 233–245 (2019)

    Google Scholar 

  • Harlow, F.H., Welch, J.E.: Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys. Fluids 8(12), 2182–2189 (1965)

    Google Scholar 

  • He, X., Zou, Q., Luo, L.-S., Dembo, M.: Analytic solutions of simple flows and analysis of nonslip boundary conditions for the lattice Boltzmann BGK model. J. Stat. Phys. 87(1–2), 115–136 (1997)

    Google Scholar 

  • Hilfer, R., Zauner, T.: High-precision synthetic computed tomography of reconstructed porous media. Phys. Rev. E 84(6), 062301 (2011)

    Google Scholar 

  • Hosa, A., Curtis, A., Wood, R.: Calibrating lattice Boltzmann flow simulations and estimating uncertainty in the permeability of complex porous media. Adv. Water Resour. 94, 60–74 (2016)

    Google Scholar 

  • Jin, G., Patzek, T., Silin, D.: Direct prediction of the absolute permeability of unconsolidated and consolidated reservoir rock. SPE 90084. In: SPE Annual Technical Conference and Exhibition (Houston. Texas, USA), SPE (2004)

  • Jones, B., Feng, Y.: Effect of image scaling and segmentation in digital rock characterisation. Comput. Part. Mech. 3(2), 201–213 (2016)

    Google Scholar 

  • Keehm, Y., Mukerji, T.: Permeability and relative permeability from digital rocks: issues on grid resolution and representative elementary volume. In: SEG Technical Program Expanded Abstracts 2004, pp. 1654–1657. Society of Exploration Geophysicists (2004)

  • Krüger, T., Kusumaatmaja, H., Kuzmin, A., Shardt, O., Silva, G., Viggen, E.M.: The Lattice Boltzmann Method. Springer, Berlin (2016)

    Google Scholar 

  • Kutay, M.E., Aydilek, A.H., Masad, E.: Laboratory validation of lattice Boltzmann method for modeling pore-scale flow in granular materials. Comput. Geotech. 33(8), 381–395 (2006)

    Google Scholar 

  • Latief, F., Fauzi, U., Irayani, Z., Dougherty, G.: The effect of x-ray micro computed tomography image resolution on flow properties of porous rocks. J. Microsc. 266(1), 69–88 (2017)

    Google Scholar 

  • Liu, T., Jin, X., Wang, M.: Critical resolution and sample size of digital rock analysis for unconventional reservoirs. Energies 11(7), 1798 (2018)

    Google Scholar 

  • Llewellin, E.: Lbflow: an extensible lattice Boltzmann framework for the simulation of geophysical flows. Part i: theory and implementation. Comput. Geosci. 36(2), 115–122 (2010)

    Google Scholar 

  • Okabe, H., Blunt, M.J.: Prediction of permeability for porous media reconstructed using multiple-point statistics. Phys. Rev. E 70(6), 066135 (2004)

    Google Scholar 

  • Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)

    Google Scholar 

  • Pan, C., Hilpert, M., Miller, C.T.: Pore-scale modeling of saturated permeabilities in random sphere packings. Phys. Rev. E 64(6), 066702 (2001)

    Google Scholar 

  • Peng, S., Hu, Q., Dultz, S., Zhang, M.: Using x-ray computed tomography in pore structure characterization for a berea sandstone: resolution effect. J. Hydrol. 472, 254–261 (2012)

    Google Scholar 

  • Peng, S., Marone, F., Dultz, S.: Resolution effect in x-ray microcomputed tomography imaging and small pore’s contribution to permeability for a berea sandstone. J. Hydrol. 510, 403–411 (2014)

    Google Scholar 

  • Piller, M., Schena, G., Nolich, M., Favretto, S., Radaelli, F., Rossi, E.: Analysis of hydraulic permeability in porous media: from high resolution x-ray tomography to direct numerical simulation. Transp. Porous Media 80(1), 57 (2009)

    Google Scholar 

  • Rao, P., Schaefer, L.: Lattice Boltzmann models for micro-tomographic pore-spaces (2019). arXiv:1902.11193

  • Saxena, N., Hows, A., Hofmann, R., Alpak, F.O., Freeman, J., Hunter, S., Appel, M.: Imaging and computational considerations for image computed permeability: operating envelope of digital rock physics. Adv. Water Resour. 116, 127–144 (2018)

    Google Scholar 

  • Shah, S., Gray, F., Crawshaw, J., Boek, E.: Micro-computed tomography pore-scale study of flow in porous media: effect of voxel resolution. Adv. Water Resour. 95, 276–287 (2016)

    Google Scholar 

  • Skordos, P.: Initial and boundary conditions for. Phys. Rev. E 48(6), 4823 (1993)

    Google Scholar 

  • Song, Y., Davy, C.A., Kim, T.N., Troadec, D., Hauss, G., Jeannin, L., Adler, P.M.: Two-scale analysis of a tight gas sandstone. Phys. Rev. E 94(4), 043316 (2016)

    Google Scholar 

  • Velasco, F.R.: Thresholding Using the Isodata Clustering Algorithm. Technical report, Maryland Univ College Park Computer Science Center (1979)

  • Willingham, T.W., Werth, C.J., Valocchi, A.J.: Evaluation of the effects of porous media structure on mixing-controlled reactions using pore-scale modeling and micromodel experiments. Environ. Sci. Technol. 42(9), 3185–3193 (2008)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the support from Swansea University and China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenfeng Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Tables 2, 3 and 4.

Table 2 The intermediate variables of permeability error correction for Fontainebleau sandstones
Table 3 The intermediate variables of permeability error correction for different sandstones
Table 4 The intermediate variables of permeability error correction for different porous media

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, J., Dong, J., Wang, Y. et al. Resolution Effect: An Error Correction Model for Intrinsic Permeability of Porous Media Estimated from Lattice Boltzmann Method. Transp Porous Med 132, 627–656 (2020). https://doi.org/10.1007/s11242-020-01406-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-020-01406-z

Keywords

Navigation