Skip to main content

Advertisement

Log in

The Low-Energy Telescope (LET) and SEP Central Electronics for the STEREO Mission

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

The Low-Energy Telescope (LET) is one of four sensors that make up the Solar Energetic Particle (SEP) instrument of the IMPACT investigation for NASA’s STEREO mission. The LET is designed to measure the elemental composition, energy spectra, angular distributions, and arrival times of H to Ni ions over the energy range from ∼3 to ∼30 MeV/nucleon. It will also identify the rare isotope 3He and trans-iron nuclei with 30≤Z≤83. The SEP measurements from the two STEREO spacecraft will be combined with data from ACE and other 1-AU spacecraft to provide multipoint investigations of the energetic particles that result from interplanetary shocks driven by coronal mass ejections (CMEs) and from solar flare events. The multipoint in situ observations of SEPs and solar-wind plasma will complement STEREO images of CMEs in order to investigate their role in space weather. Each LET instrument includes a sensor system made up of an array of 14 solid-state detectors composed of 54 segments that are individually analyzed by custom Pulse Height Analysis System Integrated Circuits (PHASICs). The signals from four PHASIC chips in each LET are used by a Minimal Instruction Set Computer (MISC) to provide onboard particle identification of a dozen species in ∼12 energy intervals at event rates of ∼1,000 events/sec. An additional control unit, called SEP Central, gathers data from the four SEP sensors, controls the SEP bias supply, and manages the interfaces to the sensors and the SEP interface to the Instrument Data Processing Unit (IDPU). This article outlines the scientific objectives that LET will address, describes the design and operation of LET and the SEP Central electronics, and discusses the data products that will result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ACE:

Advanced Composition Explorer

ACR:

Anomalous Cosmic Ray

ADC:

Analog-to-Digital Converter

ALU:

Arithmetic Logic Unit

ApID:

Application process Identifier

ASCII:

American Standard Code for Information Interchange

ASIC:

Application Specific Integrated Circuit

C&DH:

Command and Data Handling

CCSDS:

Consultative Committee for Space Data Systems

CF:

Correction Factor

CIR:

Corotating Interaction Region

CME:

Coronal Mass Ejection

CMOS:

Complementary Metal Oxide Semiconductor

CNO:

Carbon, Nitrogen, and Oxygen element group

CPU:

Central Processing Unit

CPU24:

GSFC version of MISC

CRIS:

Cosmic Ray Isotope Spectrometer

CV:

Capacitance (C) vs. Voltage (V)

DAC:

Digital-to-Analog Converter

DC:

Direct Current

DPU:

Data Processing Unit

EEPROM:

Electronically Erasable Programmable Read-Only Memory

EGSE:

Electrical Ground Support Equipment

EM:

Engineering Model

EOR:

End of Record

EPAM:

Electron, Proton, and Alpha Monitor

EPHIN:

Electron Proton Helium Instrument (SoHO)

ERH:

Event Record Header

ESA:

European Space Agency

ESP:

Energetic Storm Particles

EUV:

Extreme Ultraviolet

E/M:

Energy/nucleon

FET:

Field Effect Transistor

FM1:

Flight Model 1

FM2:

Flight Model 2

FOV:

Field Of View

FPGA:

Field-Programmable Gate Array

FR4:

Flame Resistant 4 (printed circuit board material)

F.S.:

Full scale

GALEX:

Galaxy Evolution Explorer

GCR:

Galactic Cosmic Ray

GEANT:

Geometry And Tracking (A toolkit for the simulation of particles through matter)

GOES:

Geostationary Operational Environmental Satellite

GSE:

Ground Support Equipment

GSFC:

Goddard Space Flight Center

HAZ:

“HAZard” event

HET:

High Energy Telescope

HV:

High Voltage

HVPS:

High Voltage Power Supply

I/F:

Interface

I/O:

Input/Output

ICD:

Interface Control Document

ICME:

Interplanetary Coronal Mass Ejection

ID:

Identification

IDPU:

IMPACT Data Processing Unit

IMF:

Interplanetary Magnetic Field

IMP:

Interplanetary Monitoring Platform

IMPACT:

In situ Measurements of Particles And CME Transients

ISEE-3:

International Sun-Earth Explorer 3

ISM:

Interstellar Medium

IT:

Information Technology

ITAR:

International Traffic in Arms Regulations

ITO:

Indium Tin Oxide

IV:

Leakage current (I) vs. Voltage (V)

JPL:

Jet Propulsion Laboratory

LBL:

Lawrence Berkeley Laboratory

LEMT:

Low Energy Matrix Telescope

LET:

Low Energy Telescope

LiBeB:

Lithium, Beryllium, and Boron element group

LVPS:

Low Voltage Power Supply

MAG:

Magnetometer

MISC:

Minimal Instruction Set Computer

MRD:

Mission Requirements Document

MSU:

Michigan State University

NASA:

National Aeronautics and Space Administration

NASTRAN:

NASA Structural Analysis system

NeMgSi:

Neon, Magnesium, and Silicon element group

NOAA:

National Oceanic and Atmospheric Administration

NSCL:

National Superconducting Cyclotron Laboratory

OGO:

Orbiting Geophysical Observatory

PDFE:

Particle Detector Front End

PEN:

Penetrating event

PHA:

Pulse Height Analyzer

PHASIC:

Pulse Height Analysis System Integrated Circuit

PLASTIC:

Plasma And Suprathermal Ion Composition

PSI:

Pounds per Square Inch

RHESSI:

Ramaty High Energy Solar Spectroscopic Imager

RISC:

Reduced Instruction Set Computer

RTSW:

Real-Time Solar Wind

SAMPEX:

Solar, Anomalous, and Magnetospheric Particle Explorer

SDO:

Solar Dynamics Observatory

SECCHI:

Sun Earth Connection Coronal and Heliospheric Investigation

SEP:

Solar Energetic Particle

SEPT:

Solar Electron Proton Telescope

SEPT-E:

Ecliptic-viewing component of SEPT

SEPT-NS:

North/South viewing component of SEPT

SIS:

Solar Isotope Spectrometer

SIT:

Suprathermal Ion Telescope

SOHO:

Solar Heliospheric Observatory

SRAM:

Static Random Access Memory

SRL:

Space Radiation Laboratory

SSD:

Solid-State Detector

STEREO:

Solar Terrestrial Relations Observatory

STIM:

Stimulated (pulser-produced) event

SWAVES:

STEREO/WAVES Radio and Plasma Wave Experiment

TCP/IP:

Transmission Control Protocol/Internet Protocol

TOF:

Time Of Flight

UCB:

University of California Berkeley

UH:

Ultra-Heavy

ULEIS:

Ultra-Low Energy Isotope Spectrometer

UT:

Universal Time

VLSI:

Very Large Scale Integration

References

  • W.E. Althouse et al., IEEE Trans. Geosci. Electron. GE-16, 204 (1978)

    ADS  Google Scholar 

  • J.-L. Bougeret et al., Space Sci. Rev. (2007, this issue)

  • L.F. Burlaga et al., Science 309, 2027 (2005)

    ADS  Google Scholar 

  • CCSDS, in Packet Telemetry Recommendation for Space Data System Standards (CCSDS, Washington, 2000). 102.0-B-5, Blue Book, Issue5

    Google Scholar 

  • H.V. Cane, D. Lario, Space Sci. Rev. (2006). doi:10.1007/s11214-006-9011-3

    Google Scholar 

  • H.V. Cane, W.C. Erickson, N.P. Prestage, J. Geophys. Res. (2002). doi:10.1029/2001JA000320

    Google Scholar 

  • H.V. Cane et al., Geophys. Res. Lett. (2003). doi:10.1029/2002GL016580

    Google Scholar 

  • H.V. Cane et al., J. Geophys. Res. (2006). doi:10.1029/2005JA011071

    Google Scholar 

  • C.M.S. Cohen et al., Geophys. Res. Lett. 26, 2697 (1999)

    ADS  Google Scholar 

  • C.M.S. Cohen et al., J. Geophys. Res. (2005). doi:10.1029/2005JA011004

    ADS  Google Scholar 

  • C.M.S. Cohen et al., Space Sci. Rev. (2007). doi:10.1007/s11214-007-9218-y

    Google Scholar 

  • W.R. Cook et al., Custom analog VLSI for the Advanced Composition Explorer (ACE), small instruments for space physics, in Proceedings of the Small Instrument Workshop, held 29–31 March, 1993 in Pasadena, CA, ed. by B.T. Tsurutani (National Aeronautics and Space Division, Washington, 1993), p. 7

  • A.C. Cummings, E.C. Stone, C.D. Steenberg, Astrophys. J. 578, 194 (2002)

    ADS  Google Scholar 

  • M.I. Desai et al., Astrophys. J. 649, 470 (2006)

    ADS  Google Scholar 

  • W. Dröge et al., Astrophys. J. 645, 1516 (2006)

    ADS  Google Scholar 

  • J.R. Dwyer et al., Astrophys. J. 563, 403 (2001)

    ADS  Google Scholar 

  • L.A. Fisk, B. Koslovsky, R. Ramaty, Astrophys. J. Lett. 190, L35 (1974)

    ADS  Google Scholar 

  • A.B. Galvin et al., Space Sci. Rev. (2007, this issue)

  • J. Giacalone, J.R. Jokipii, J.E. Mazur, Astrophys. J. 532, L75 (2000)

    ADS  Google Scholar 

  • G. Gloeckler, Space Sci. Rev. 89, 91 (1999)

    ADS  Google Scholar 

  • D.K. Haggerty, E.C. Roelof, in 27th International Cosmic Ray Conference, ed. by W. Dröge, H. Kunow, M. Scholer (Schaltungsdienst Lange o.H.G., Berlin, 2001), p. 3238

    Google Scholar 

  • D.K. Haggerty, E.C. Roelof, Astrophys. J. 579, 841 (2002)

    ADS  Google Scholar 

  • E. Halpern, J.H. Marshall, IEEE Trans. Nucl. Sci. NS-15, 242 (1968)

    ADS  Google Scholar 

  • E. Halpern, J.H. Marshall, D. Weeks, Nucleonics in Aerospace (Plenum, New York, 1968), p. 98

    Google Scholar 

  • T.M. Harrington, J.H. Marshall, Rev. Sci. Instrum. 39, 184 (1968)

    ADS  Google Scholar 

  • T.M. Harrington, J.H. Marshall, IEEE Trans. Nucl. Sci. NS-16, 314 (1969)

    Article  ADS  Google Scholar 

  • T.M. Harrington et al., Nucl. Instrum. Methods 118, 401 (1974)

    ADS  Google Scholar 

  • G.C. Ho, E.C. Roelof, G.M. Mason, Astrophys. J. 621, L141 (2005)

    ADS  Google Scholar 

  • J.L. Hoff, L.W. Townsend, J.W. Hines, IEEE Trans. Nucl. Sci. 50, 2296 (2003)

    ADS  Google Scholar 

  • R.A. Howard et al., Space Sci. Rev. (2007, this issue)

  • J.F. Janni, Technical report No. AFWL-TR-65-150, Air Force Weapons Laboratory, Kirtland Air Force Base, NM, 1966

  • S.W. Kahler, A. Vourlidas, J. Geophys. Res. (2005). doi:10.1029/2006JA011073

    Google Scholar 

  • A. Klassen et al., J. Geophys. Res. 110 (2005). CiteID A09S04

  • B. Klecker et al., Adv. Space Res. 38, 493 (2006)

    ADS  Google Scholar 

  • S. Krucker, R.P. Lin, Astrophys. J. 542, L61 (2000)

    ADS  Google Scholar 

  • A.W. Labrador et al., in 28th International Cosmic Ray Conference, ed. by T. Kajta, Y. Asaoka, A. Kawachi, Y. Matsubara, M. Sasaki (Universal Academy Press, Inc., Tokyo, 2003), p. 3269

    Google Scholar 

  • A.W. Labrador et al., in 29th International Cosmic Ray Conference, vol. 1, ed. by B. Sripathi et al. (Tata Institute of Fundamental Research, Mumbai, 2005), p. 99

    Google Scholar 

  • R.A. Leske et al., in Acceleration and Transport of Energetic Particles Observed in the Heliosphere, ed. by R.A. Mewaldt et al. (AIP, Melville, 2000), p. 293

    Google Scholar 

  • R.A. Leske et al., in Connecting Sun and Heliosphere, ed. by B. Fleck, T.H. Zurbuchen, H. Lacoste (ESA, Whistler, 2003a), p. 616

    Google Scholar 

  • R.A. Leske et al., in 28th International Cosmic Ray Conference, ed. by T. Kajta, Y. Asaoka, A. Kawachi, Y. Matsubara, M. Sasaki (Universal Academy Press, Inc., Tokyo, 2003b), p. 3253

    Google Scholar 

  • R.A. Leske et al., Space Sci. Rev. (2007a). doi:10.1007/s11214-007-9191-5

    Google Scholar 

  • R.A. Leske et al., Space Sci. Rev. (2007b). doi:10.1007/s11214-007-9185-3

    Google Scholar 

  • G. Li, G.P. Zank, W.K.M. Rice, J. Geophys. Res. (2005). doi:10.1029/2004JA010600

    Google Scholar 

  • R.P. Lin et al., Space Sci. Rev. (2007, this issue)

  • J.G. Luhmann et al., Adv. Space Res. 36, 1534 (2005)

    ADS  Google Scholar 

  • J.G. Luhmann et al., Space Sci. Rev. (2007, this issue). doi:10.1007/s11214-007-9170-x

    Google Scholar 

  • G.M. Mason, G. Gloeckler, D. Hovestadt, Astrophys. J. 280, 902 (1984)

    ADS  Google Scholar 

  • G.M. Mason, J.E. Mazur, D.C. Hamilton, Astrophys. J. 425, 843 (1994)

    ADS  Google Scholar 

  • G.M. Mason et al., Astrophys. J. 486, L149 (1997)

    ADS  Google Scholar 

  • G.M. Mason et al., Geophys. Res. Lett. 26, 141 (1999)

    ADS  Google Scholar 

  • G.M. Mason, J.R. Dwyer, J.E. Mazur, Astrophys. J. 545, L157 (2000)

    ADS  Google Scholar 

  • G.M. Mason et al., Astrophys. J. 574, 1039 (2002)

    ADS  Google Scholar 

  • G.M. Mason, J.E. Mazur, J.R. Dwyer, Astrophys. J. 565, L51 (2002)

    ADS  Google Scholar 

  • G.M. Mason et al., Astrophys. J. 606, 555 (2004)

    ADS  Google Scholar 

  • G.M. Mason et al., Space Sci. Rev. (2007, this issue). doi:10.1007/s11214-006-9087-9

    Google Scholar 

  • J.E. Mazur et al., Geophys. Res. Lett. 26, 173 (1999)

    ADS  Google Scholar 

  • J.E. Mazur et al., Astrophys. J. 532, L79 (2000)

    ADS  Google Scholar 

  • J.E. Mazur, G.M. Mason, R.A. Mewaldt, Astrophys. J. 566, 555 (2002)

    ADS  Google Scholar 

  • F.B. McDonald et al., in 29th International Cosmic Ray Conference, vol. 2, ed. by B. Sripathi Acharya et al. (Tata Institute of Fundamental Research, Mumbai, 2005), p. 35

    Google Scholar 

  • D.J. McComas, N.A. Schwadron, Geophys. Res. Lett. (2006). doi:10.1029/2005GL025437

    Google Scholar 

  • M.A. McMahan, Nucl. Instr. Methods Phys. Res. B241, 409 (2005)

    ADS  Google Scholar 

  • R.A. Mewaldt, in 26th International Cosmic Ray Conference, Invited, Rapporteur, and Highlight Papers, ed. by B.L. Dingus, D.B. Kieda, M.H. Salamon (AIP, Melville, 2000), p. 265

    Google Scholar 

  • R.A. Mewaldt et al., in 28th International Cosmic Ray Conference, ed. by T. Kajta, Y. Asaoka, A. Kawachi, Y. Matsubara, M. Sasaki (Universal Academy Press, Inc., Tokyo, 2003), p. 3313

    Google Scholar 

  • R.A. Mewaldt et al., in Proc. 29th International Cosmic Ray Conf., vol. 1, ed. by B. Sripathi Acharya et al. (Tata Institute of Fundamental Research, Mumbai, 2005a), p. 57

    Google Scholar 

  • R.A. Mewaldt et al., J. Geophys. Res. (2005b). doi:10.1029/2005JA011038

    Google Scholar 

  • R.A. Mewaldt et al., in The Physics of Collisionless Shocks, ed. by G. Li, G.P. Zank, C.T. Russell (AIP, Melville, 2005c), p. 227

    Google Scholar 

  • R.A. Mewaldt et al., in Connecting Sun and Heliosphere, ed. by B. Fleck, T.H. Zurbuchen, H. Lacoste (ESA, Whistler, 2005d), p. 67

    Google Scholar 

  • R.A. Mewaldt, C.M.S. Cohen, G.M. Mason, in Solar Eruptions and Energetic Particles, ed. by N. Gopalswamy, R.A. Mewaldt, J. Torsti (AGU, Washington, 2006), p. 115

    Google Scholar 

  • R.A. Mewaldt, Space Sci. Rev. (2006). doi:10.1007/s11214-006-9091-0

    Google Scholar 

  • R.A. Mewaldt et al., Space Sci. Rev. (2007). doi:10.1007/s11214-007-9200-8

    Google Scholar 

  • E. Möbius et al., Geophys. Res. Lett. (2002). doi:10.1029/2001GL013410

    Google Scholar 

  • H. Moraal et al., in Physics of the Heliosheath, ed. by J. Heerikhusen, V. Florinski, G.P. Zank, N.V. Pogorelov (AIP, Melville, 2006), p. 219

    Google Scholar 

  • R. Müller-Mellin et al., Space Sci. Rev. (2007, this issue). doi:10.1007/s11214-007-9204-4

    Google Scholar 

  • J.S. Neal, L.W. Townsend, Radiat. Prot. Dosim. 115, 38 (2005)

    Google Scholar 

  • N.V. Nitta et al., Astrophys. J. (2006). doi:10.1086/507442

    Google Scholar 

  • T.G. Onsager et al., in GOES-8 and Beyond, SPIE Conference Proceedings, ed. by E.R. Washwell (SPIE, Bellingham, 1996), pp. 281–290

    Google Scholar 

  • M.E. Pesses, J.R. Jokipii, D. Eichler, Astrophys. J. Lett. 246, L85 (1981)

    ADS  Google Scholar 

  • V.S. Ptuskin, Space Sci. Rev. 99, 281 (2001)

    ADS  Google Scholar 

  • D.V. Reames, Adv. Space Res. 13, 331 (1993)

    ADS  Google Scholar 

  • D.V. Reames, Adv. Space Res. 15, 41 (1995)

    ADS  Google Scholar 

  • D.V. Reames, Space Sci. Rev. 90, 413 (1999)

    ADS  Google Scholar 

  • D.V. Reames, C.K. Ng, Astrophys. J. 610, 510 (2004)

    ADS  Google Scholar 

  • D.V. Reames, T.T. von Rosenvinge, R.P. Lin, Astrophys. J. 292, 716 (1985)

    ADS  Google Scholar 

  • D.V. Reames, R.G. Stone, M.-B. Kallenrode, Astrophys. J. 380, 287 (1991)

    ADS  Google Scholar 

  • D.V. Reames, J.-P. Meyer, T.T. von Rosenvinge, Astrophys. J. Suppl. 90, 649 (1994)

    ADS  Google Scholar 

  • D.V. Reames et al., Geophys. Res. Lett. 24, 2917 (1997)

    ADS  Google Scholar 

  • D.V. Reames, C.K. Ng, D. Berdichevsky, Astrophys. J. 550, 1064 (2001)

    ADS  Google Scholar 

  • W.K.M. Rice, G.P. Zank, G. Li, J. Geophys. Res. (2003). doi:10.1029/2002JA009756

    Google Scholar 

  • I.G. Richardson, Space Sci. Rev. 111, 267 (2004)

    ADS  Google Scholar 

  • N.A. Schwadron et al., Geophys. Res. Lett. (2002). doi:10.1029/2002GL015829

    Google Scholar 

  • R. Schwenn, E. Marsch, Physics of the Inner Heliosphere I and II (Springer, Berlin, 1991)

    Google Scholar 

  • J.D. Slavin, P.C. Frisch, Astrophys. J. 565, 364 (2002)

    ADS  Google Scholar 

  • E.C. Stone et al., Space Sci. Rev. 86, 1 (1998a)

    ADS  Google Scholar 

  • E.C. Stone et al., Space Sci. Rev. 86, 357 (1998b)

    ADS  Google Scholar 

  • E.C. Stone et al., Space Sci. Rev. 86, 285 (1998c)

    ADS  Google Scholar 

  • E.C. Stone et al., Science 309, 2017 (2005)

    ADS  Google Scholar 

  • R.E. Turner, in Solar Eruptions and Energetic Particles, ed. by N. Gopalswamy, A. Mewaldt, J. Torsti (AGU, Washington, 2006), p. 367

    Google Scholar 

  • A.J. Tylka, W.F. Dietrich, P.R. Boberg, IEEE Trans. Nucl. Sci. 44, 2140 (1997)

    ADS  Google Scholar 

  • A.J. Tylka et al., Astrophys. J. 558, L59 (2001)

    ADS  Google Scholar 

  • A.J. Tylka et al., in 28th International Cosmic Ray Conference, ed. by T. Kajta, Y. Asaoka, A. Kawachi, Y. Matsubara, M. Sasaki (Universal Academy Press, Inc., Tokyo, 2003), p. 3305

    Google Scholar 

  • A.J. Tylka et al., Astrophys. J. 625, 474 (2005)

    ADS  Google Scholar 

  • J. Vandegriff et al., Adv. Space Res. 36, 2323 (2005)

    Google Scholar 

  • T.T. von Rosenvinge et al., in Solar and Galactic Composition, ed. by R.F. Wimmerschweingruber (AIP, Melville, 2001), p. 343

    Google Scholar 

  • T.T. von Rosenvinge et al., Space Sci. Rev. (2007, this issue)

  • A. Vourlidas et al., Astrophys. J. 534, 456 (2000)

    ADS  Google Scholar 

  • Y.-M. Wang, M. Pick, G.M. Mason, Astrophys. J. 639, 495 (2006a)

    ADS  Google Scholar 

  • L. Wang et al., Geophys. Res. Lett. (2006b). doi:10.1029/2005GL024434

    Google Scholar 

  • M.E. Wiedenbeck et al., in 28th International Cosmic Ray Conference, ed. by T. Kajta, Y. Asaoka, A. Kawachi, Y. Matsubara, M. Sasaki (Universal Academy Press, Inc., Tokyo, 2003), p. 3245

    Google Scholar 

  • M. Zhang et al., in Physics of the Heliosheath, ed. by J. Heerikhusen, V. Florinski, G.P. Zank, N.V. Pogorelov (AIP, Melville, 2006), p. 226

    Google Scholar 

  • R.D. Zwickl et al., Space Sci. Rev. 86, 633 (1998)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Mewaldt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mewaldt, R.A., Cohen, C.M.S., Cook, W.R. et al. The Low-Energy Telescope (LET) and SEP Central Electronics for the STEREO Mission. Space Sci Rev 136, 285–362 (2008). https://doi.org/10.1007/s11214-007-9288-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-007-9288-x

Keywords

Navigation