Skip to main content
Log in

CO oxidation over Pt-modified fly ash zeolite X

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

In this study, an attempt to find a solution for environmental problems as the utilization of the waste of fly ash together with reducing of CO emissions is presented. Zeolite X from fly ash is obtained and used as a catalyst support and this leads to minimization of the catalyst cost. Reference sample synthesized from pure chemicals is modified with the same amount of iron that is content in the fly ash zeolite in order to be compared with it. Platinum is loaded on both samples and the activity for CO oxidation is investigated. The temperature difference for 100% CO conversion (T100) on the Pt-loaded fly ash zeolite (FANaX-0.5Pt) and those of Pt modified NaX (NaX0.5 Pt) zeolite is only 20 °C (185 and 165 °C) and there is no difference in this parameter between FANaX-0.5Pt and NaX4.5Fe0.5Pt samples. These results are promising for finding of cheaper alternative of X zeolite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Qi L, Yao Y, Han T, Li J (2019) Research on the electrostatic characteristic of coal-fired fly ash. Environ Sci Pollut Res 26:7123–7131

    Article  CAS  Google Scholar 

  2. Tropek R, Cerna I, Straka J, Kocarek P, Malenovsky I, Tichanek F, Sebek P (2016) In search for a compromise between biodiversity conservation and human health protection in restoration of fly ash deposits: effect of anti-dust treatments on five groups of arthropods. Environ Sci Pollut Res 23:13653–13660

    Article  Google Scholar 

  3. Querol X, Moreno N, Umana JC, Alastuey A, Hernandez E, Lopez-Soler A, Plana F (2002) Synthesis of zeolites from coal fly ash: an overview. Intern J Coal Geol 50:413–423

    Article  CAS  Google Scholar 

  4. Liu R, Durham SA, Rens KL (2011) Effect of post mercury control fly ash on fresh and hardened concrete properties. Constr Build Mater 25:3283–3290

    Article  Google Scholar 

  5. Poon CS, Lam L, Wong YL (2000) A study on high-strength concrete prepared with large volumes of low calcium fly ash. Cem Concr Res 30:447–455

    Article  CAS  Google Scholar 

  6. Duran-Herrera A, Juarez CA, Valdez P, Bentz DP (2011) Evaluation of sustainable high-volume fly ash concretes. Cem Concr Compos 33:39–45

    Article  CAS  Google Scholar 

  7. Ghaffar A, Tabata M (2009) Dechlorination of p-nitrochlorobenzene using fly ash: Effects of metals, mixed solvents and temperature. React Kinet Mech Cat 97(1):35–41

    Article  CAS  Google Scholar 

  8. Boycheva S, Zgureva D, Barbov B, Kalvachev Y (2015) Synthetic micro-and nanocrystalline zeolites for environmental protection systems. In: Petkov P, Tsiulyanu D, Kulisch W, Popov C (eds.). Nanoscience advances in CBRN agents detection. Springer, New York.

  9. Williams JL (2001) Monolith structures, materials, properties and uses. Catal Today 69:3–9

    Article  CAS  Google Scholar 

  10. Barrer RM (1981) Zeolites and their synthesis. Zeolites 1:130–140

    Article  CAS  Google Scholar 

  11. Van Bekkum H, Flanigen EM, Jansen JC (1991) Introduction to zeolite science and practice. Elsevier, Amsterdam

    Google Scholar 

  12. Moscou L, Lakeman M (1970) Acid sites in rare-earth exchanged Y-zeolites. J Catal 16:173–180

    Article  CAS  Google Scholar 

  13. Chester AW, Derouane EG (2009) Zeolite characterization and catalysis. Springer, Dordrecht

    Book  Google Scholar 

  14. Vayssilov GN, Aleksandrov HA, Petrova GP, Petkov PS (2008) Computational modelling of nanoporous materials. In: Valchev V, Mintova S, Tsapacis M (eds) Ordered porous solids. Elsevier, Amsterdam

    Google Scholar 

  15. Vu XH, Nguyen S, Dang TT, Phan BMQ, Nguyen DA, Armbruster U, Martin A (2015) Catalytic cracking of triglyceride-rich biomass toward lower olefins over a nano-ZSM-5/SBA-15 analog composite. Catalysts 5:1692–1703

    Article  CAS  Google Scholar 

  16. Boycheva S, Zgureva D, Václavíková M, Kalvachev Yu, Lazarova H, Popova M (2019) Studies on non-modified and copper-modified coal ash zeolites as heterogeneous catalysts for VOCs oxidation. J Hazard Mater 361:374–382

    Article  CAS  PubMed  Google Scholar 

  17. Ivanova S, Louis B, Ledoux M-J, Pham-Huu C (2007) Autoassembly of nanofibrous zeolite crystals via silicon carbide substrate self-transformation. J Am Chem Soc 129:3383–3391

    Article  CAS  PubMed  Google Scholar 

  18. Kamimura Y, Tanahashi S, Itabashi K, Sugawara A, Wakihara T, Shimojima A, Okubo T (2011) Crystallization behavior of zeolite Beta in OSDA-free seed-assisted synthesis. J Phys Chem C 115:744–750

    Article  CAS  Google Scholar 

  19. Majano G, Delmotte L, Valtchev V, Mintova S (2009) Al-rich zeolite beta by seeding in the absence of organic template. Chem Mater 21:4184–4191

    Article  CAS  Google Scholar 

  20. Perego C, Ingallina P (2002) Recent advances in the industrial alkylation of aromatics: new catalysts and new processes. Catal Today 73:3–22

    Article  CAS  Google Scholar 

  21. Wang H, Holmberg BA, Yan Y (2003) Synthesis of template-free zeolite nanocrystals by using in situ thermoreversible polymer hydrogels. J Am Chem Soc 125:9928–9929

    Article  CAS  PubMed  Google Scholar 

  22. Murayama N, Yamamoto H, Shibata J (2002) Zeolite synthesis from coal fly ash by hydrothermal reaction using various alkali sources. J Chem Technol Biotechnol 77:280–286

    Article  CAS  Google Scholar 

  23. Wajima T, Kuzawa K, Ishimoto H, Tamada O, Nishiyama T (2004) The synthesis of zeolite-P, linde type A, and hydrox-ysodalite zeolites from paper sludge ash at low temperature (80 °C): optimal ash-leaching condition for zeolite synthesis. Am Miner 89:1694–1700

    Article  CAS  Google Scholar 

  24. Belviso C, Cavalcante F, Lettino A, Fiore S (2013) A and X-type zeolites synthesised from kaolinite at low temperature. Appl Clay Sci 80–81:162–168

    Article  CAS  Google Scholar 

  25. Masoudian SK, Sadighi S, Abbasi A (2013) Synthesis and characterization of high aluminum zeolite X from technical grade materials. Bull Chem React Eng Catal 8:54–60

    Article  CAS  Google Scholar 

  26. Derkowski A, Franus W, Beran E, Czímerová A (2006) Properties and potential applications of zeolitic materials produced from fly ash using simple method of synthesis. Powder Technol 166:47–54

    Article  CAS  Google Scholar 

  27. Li J, Shi Y, Fu X, Huang J, Zhang Y, Deng S, Zhang F (2019) Hierarchical ZSM-5 based on fy ash for the low-temperature purifcation of odorous volatile organic compound in cooking fumes. React Kinet Mech Cat 128(1):289–314

    Article  CAS  Google Scholar 

  28. Kummer JT (1975) Oxidation of CO and C2H4 by base metal catalysts prepared on honeycomb supports. In: Evoy JMc (ed.). Catalysts for the control of automotive pollutants. American Chemical Society, Washington DC.

  29. Tsou J, Magnoux P, Guisnet M, Órfão JM, Figueiredo JL (2005) Catalytic oxidation of volatile organic compounds: oxidation of methyl-isobutyl-ketone over Pt/zeolite catalysts. Appl Catal B 57:117–123

    Article  CAS  Google Scholar 

  30. Jianga XC, Yua AB (2009) Synthesis of Pd/-Fe2O3 nanocomposites for catalytic CO oxidation. J Mater Proc Technol 209:4558–4562

    Article  CAS  Google Scholar 

  31. Spivey JJ (1987) Complite catalytic oxidation of volatile organics. Ind Eng Chem Res 26:2165–2180

    Article  CAS  Google Scholar 

  32. Qiao B, Liu L, Zhang J, Deng Y (2009) Preparation of highly effective ferric hydroxide supported noble metal catalysts for CO oxidations: from gold to palladium. J Catal 261:241–244

    Article  CAS  Google Scholar 

  33. Li S, Liu G, Lian H, Jia M, Zhao G, Jiang D, Zhang W (2008) Low-temperature CO oxidation over supported Pt catalysts prepared by colloid-deposition method. Catal Commun 9:1045–1049

    Article  CAS  Google Scholar 

  34. Sharma RK, Zhou B, Tong S, Chuang KT (1995) Catalytic destruction of volatile organic compounds using supported platinum and palladium hydrophobic catalysts. Ind Eng Chem Res 34:4310–4317

    Article  CAS  Google Scholar 

  35. Wu JC, Chang TY (1998) VOC deep oxidation over Pt catalysts using hydrophobic supports. Catal Today 44:111–118

    Article  CAS  Google Scholar 

  36. Tsou J, Magnoux P, Guisnet M, Órfão JM, Figueiredo JL (2004) Oscillation in the catalytic oxidation of volatile organic compounds. J Catal 225:147–154

    Article  CAS  Google Scholar 

  37. Popova M, Boycheva S, Lazarova H, Zgureva D, Lazar K, Szegedi A (2019) VOC oxidation and CO2 adsorption on dual adsorption/catalytic system based on fly ash zeolites. Catal Today. https://doi.org/10.1016/j.cattod.2019.06.070

    Article  Google Scholar 

  38. Hui KS, Chao C (2007) In: Proceedings of IMECE 2007 ASME international mechanical engineering congress and exposition. Seattle, Washington

  39. Krisnandi Y, Yanti F, Murti S (2017) Synthesis of ZSM-5 zeolite from coal fly ash andrice husk: characterization and application forpartial oxidation of methane to methanol. IOP Conf Ser 188:012031

    Article  Google Scholar 

  40. Lechert H, Kacirek H (1991) Investigations on the crystallization of X-type zeolites. Zeolites 11:720–728

    Article  CAS  Google Scholar 

  41. Kalvachev Yu, Zgureva D, Boycheva S, Barbov B (2016) Synthesis of carbon dioxide adsorbents by zeolitization of fly ash. J Therm Anal Calorim 124:101–106

    Article  CAS  Google Scholar 

  42. Hadjiivanov K, Vayssilov G (2002) Characterization of oxide surfaces and zeolites by carbon monoxide as an IR probe molecule. Adv Catal 47:307–511

    CAS  Google Scholar 

  43. Jorgensen N, Rochester CH (1986) An infrared study of carbon monoxide adsorption on promoted and unpromoted iron. Appl Catal 25:69–76

    Article  CAS  Google Scholar 

  44. Kubanek P, Schmidt H-W, Spliethoff B, Schuth F (2005) Parallel IR spectroscopic characterization of CO chemisorptions on Pt loaded zeolites. Microporous Mesoporous Mater 77:89–96

    Article  CAS  Google Scholar 

  45. Sato T, Kunimatsu K, Watanabe M, Uchida H (2011) Adsorption and oxidation of carbon monoxide on Pt/C. Pt3Co/C, and PtRu/C catalysts studied by in-situ attenuated total reflection Fourier-transform infrared. J Nanosci Nanotechnol 11:5123–5130

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Bulgarian National Science Fund (Contract No. DN 19/5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri Kalvachev.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Todorova, S., Barbov, B., Todorova, T. et al. CO oxidation over Pt-modified fly ash zeolite X. Reac Kinet Mech Cat 129, 773–786 (2020). https://doi.org/10.1007/s11144-020-01730-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-020-01730-x

Keywords

Navigation