Skip to main content
Log in

Optimal conditions for Bell-inequality violation in the presence of decoherence and errors

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We obtain the set of all detector configurations providing the maximal violation of the Bell inequality in the Clauser–Horne–Shimony–Holt form for a general (pure or mixed) state of two qubits. Next, we analyze optimal conditions for the Bell-inequality violations in the presence of local decoherence, which includes energy relaxation at the zero temperature and arbitrary pure dephasing. We reveal that in most cases the Bell inequality violation is maximal for the “even” two-qubit state. Combined effects of measurement errors and decoherence on the Bell inequality violation are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alicki R., Lendi K.: Quantum Dynamical Semigroups and Applications. Springer, Berlin (1987)

    MATH  Google Scholar 

  2. Altepeter J.B., Jeffrey E.R., Kwiat P.G.: Phase-compensated ultra-bright source of entangled photons. Opt. Express 13, 8951–8959 (2005)

    Article  ADS  Google Scholar 

  3. Ann K., Jaeger G.: Generic tripartite Bell nonlocality sudden death under local phase noise. Phys. Lett. A 372, 6853–6858 (2008)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. Ansmann M., Wang H., Bialczak R.C., Hofheinz M., Lucero E., Neeley M., O’Connell A.D., Sank D., Weides M., Wenner J., Cleland A.N., Martinis J.M.: Violation of Bell’s inequality in Josephson phase qubits. Nature 461, 504–506 (2009)

    Article  ADS  Google Scholar 

  5. Aspect A.: Bell’s theorem: the naive view of an experimentalist. In: Bertlmann, R.A., Zeilinger, A. (eds) Quantum [Un]speakables—From Bell to Quantum Information, pp. 119–153. Springer, Berlin (2002)

    Google Scholar 

  6. Aspect A., Dalibard J., Roger G.: Experimental test of Bell inequalities using time-varying analyzers. Phys. Rev. Lett. 49, 1804–1807 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  7. Aspect A., Grangier P., Roger G.: Experimental tests of realistic local theories via Bell’s theorem. Phys. Rev. Lett. 47, 460–463 (1981)

    Article  ADS  Google Scholar 

  8. Aspect A., Grangier P., Roger G.: Experimental realization of Einstein–Podolsky–Rosen–Bohm gedankenexperiment—a new violation of Bell inequalities. Phys. Rev. Lett. 49, 91–94 (1982)

    Article  ADS  Google Scholar 

  9. Ban M.: Decoherence of qubit entanglement caused by transient environments. J. Phys. B 40, 689–696 (2007)

    Article  Google Scholar 

  10. Beenakker C.W.J., Emary C., Kindermann M., van Velsen J.L.: Proposal for production and detection of entangled electron-hole pairs in a degenerate electron gas. Phys. Rev. Lett. 91, 147,901 (2003)

    Article  Google Scholar 

  11. Bell J.S.: On the Einstein Podolosky Rosen paradox. Physics 1, 195–200 (1964)

    Google Scholar 

  12. Bell J.S.: Introduction to the hidden-variable question. In: d’Espagnat, B. (eds) Foundations of Quantum Mechanics, pp. 171–181. Academic, New York (1971)

    Google Scholar 

  13. Berkley A.J., Xu H., Ramos R.C., Gubrud M.A., Strauch F.W., Johnson P.R., Anderson J.R., Dragt A.J., Lobb C.J., Wellstood F.C.: Entangled macroscopic quantum states in two superconducting qubits. Science 300, 1548–1550 (2003)

    Article  ADS  Google Scholar 

  14. Braunstein S.L., Mann A., Revzen M.: Maximal violation of Bell inequalities for mixed states. Phys. Rev. Lett. 68, 3259–3261 (1992)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. Capasso V., Fortunato D., Selleri F.: Sensitive observables of quantum mechanics. Int. J. Theor. Phys. 7, 319–326 (1973)

    Article  MathSciNet  Google Scholar 

  16. Cirel’son B.S.: Quantum generalizations of Bell’s-inequality. Lett. Math. Phys. 4, 93–106 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  17. Claudon J., Balestro F., Hekking F.W.J., Buisson O.: Coherent oscillations in a superconducting multilevel quantum system. Phys. Rev. Lett. 93, 187,003 (2004)

    Article  Google Scholar 

  18. Clauser J.F., Horne M.A., Shimony A., Holt R.A.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880–883 (1969)

    Article  ADS  Google Scholar 

  19. Cohen-Tannoudji C., Dupont-Roc J., Grynberg G.: Atom-Photon Interactions. Wiley, New York (1992)

    Google Scholar 

  20. Eberhard P.H.: Background level and counter efficiencies required for a loophole-free Einstein–Podolsky–Rosen experiment. Phys. Rev. A 47, R747–R750 (1993)

    Article  ADS  Google Scholar 

  21. Einstein A., Podolsky B., Rosen N.: Can quantum-mechanical description of physical reality be considered complete?. Phys. Rev. 47, 777–780 (1935)

    Article  MATH  ADS  Google Scholar 

  22. Ekert A.K.: Quantum cryptography based on Bell theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  23. Gisin N.: Bell inequality holds for all non-product states. Phys. Lett. A 154, 201–202 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  24. Hasegawa Y., Loidl R., Badurek G., Baron M., Rauch H.: Violation of a Bell-like inequality in single-neutron interferometry. Nature 425, 45–48 (2003)

    Article  ADS  Google Scholar 

  25. Hill S., Wootters W.K.: Entanglement of a pair of quantum bits. Phys. Rev. Lett. 78, 5022–5025 (1997)

    Article  ADS  Google Scholar 

  26. Hioe F.T., Eberly J.H.: N-level coherence vector and higher conservation-laws in quantum optics and quantum-mechanics. Phys. Rev. Lett. 47, 838–841 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  27. Horodecki R., Horodecki P., Horodecki M.: Violating Bell inequality by mixed spin-1/2 states—necessary and sufficient condition. Phys. Lett. A 200, 340–344 (1995)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  28. Ionicioiu, R., Zanardi, P., Rossi, F.: Testing Bell’s inequality with ballistic electrons in semiconductors. Phys. Rev. A 63, 050,101(R) (2001)

  29. Jakóbczyk L., Jamróz A.: Entanglement and nonlocality versus spontaneous emission in two-atom systems. Phys. Lett. A 318, 318–326 (2003)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  30. Jakóbczyk L., Jamróz A.: Noise-induced finite-time disentanglement in two-atomic system. Phys. Lett. A 333, 35–45 (2004)

    Article  MATH  ADS  Google Scholar 

  31. Jamróz A.: Local aspects of disentanglement induced by spontaneous emission. J. Phys. A 39, 7727–7735 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  32. Kofman A.G., Korotkov A.N.: Analysis of Bell inequality violation in superconducting phase qubits. Phys. Rev. B 77, 104,502 (2008)

    Article  Google Scholar 

  33. Kofman A.G., Korotkov A.N.: Bell-inequality violation versus entanglement in the presence of local decoherence. Phys. Rev. A 77, 052,329 (2008)

    Article  Google Scholar 

  34. Kofman A.G., Zhang Q., Martinis J.M., Korotkov A.N.: Theoretical analysis of measurement crosstalk for coupled Josephson phase qubits. Phys. Rev. B 75, 014,524 (2007)

    Article  Google Scholar 

  35. Li S.B., Xu J.B.: Entanglement, Bell violation, and phase decoherence of two atoms inside an optical cavity. Phys. Rev. A 72, 022,332 (2005)

    Google Scholar 

  36. Ling A., Peloso M.P., Marcikic I., Scarani V., Lamas-Linares A., Kurtsiefer C.: Experimental quantum key distribution based on a Bell test. Phys. Rev. A 78, 020,301 (2008)

    Article  Google Scholar 

  37. Martinis J.M., Nam S., Aumentado J., Urbina C.: Rabi oscillations in a large Josephson-junction qubit. Phys. Rev. Lett. 89, 117,901 (2002)

    Article  Google Scholar 

  38. Matsukevich D.N., Maunz P., Moehring D.L., Olmschenk S., Monroe C.: Bell inequality violation with two remote atomic qubits. Phys. Rev. Lett. 100, 150,404 (2008)

    Article  Google Scholar 

  39. McDermott R., Simmonds R.W., Steffen M., Cooper K.B., Cicak K., Osborn K.D., Oh S., Pappas D.P., Martinis J.M.: Simultaneous state measurement of coupled Josephson phase qubits. Science 307, 1299–1302 (2005)

    Article  ADS  Google Scholar 

  40. Milburn G.J.: Intrinsic decoherence in quantum mechanics. Phys. Rev. A 44, 5401–5406 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  41. Moehring D.L., Madsen M.J., Blinov B.B., Monroe C.: Experimental Bell inequality violation with an atom and a photon. Phys. Rev. Lett. 93, 090,410 (2004)

    Google Scholar 

  42. Nielsen M.A., Chuang I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  43. Popescu S., Rohrlich D.: Generic quantum nonlocality. Phys. Lett. A 166, 293–297 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  44. Popescu S., Rohrlich D.: Which states violate Bell’s-inequality maximally. Phys. Lett. A 169, 411–414 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  45. Rowe M.A., Kielpinski D., Meyer V., Sackett C.A., Itano W.M., Monroe C., Wineland D.J.: Experimental violation of a Bell’s inequality with efficient detection. Nature 409, 791–794 (2001)

    Article  ADS  Google Scholar 

  46. Samuelsson P., Buttiker M.: Dynamic generation of orbital quasiparticle entanglement in mesoscopic conductors. Phys. Rev. B 71, 245,317 (2005)

    Article  Google Scholar 

  47. Samuelsson P., Sukhorukov E.V., Büttiker M.: Orbital entanglement and violation of Bell inequalities in mesoscopic conductors. Phys. Rev. Lett. 91, 157,002 (2003)

    Article  Google Scholar 

  48. Santos, M.F., Milman, P., Davidovich, L., Zagury, N.: Direct measurement of finite-time disentanglement induced by a reservoir. Phys. Rev. A 73, 040,305(R) (2006)

  49. Schlienz J., Mahler G.: Description of entanglement. Phys. Rev. A 52, 4396–4404 (1995)

    Article  ADS  Google Scholar 

  50. Schrödinger E.: Discussion of probability relations between separated systems. Proc. Camb. Phil. Soc. 31, 555–563 (1935)

    Article  ADS  Google Scholar 

  51. Steffen M., Ansmann M., Bialczak R.C., Katz N., Lucero E., McDermott R., Neeley M., Weig E.M., Cleland A.N., Martinis J.M.: Measurement of the entanglement of two superconducting qubits via state tomography. Science 313, 1423–1425 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  52. Tolkunov, D., Privman, V., Aravind, P.K.: Decoherence of a measure of entanglement. Phys. Rev. A 71, 060,308(R) (2005)

  53. Trauzettel B., Jordan A.N., Beenakker C.W.J., Buttiker M.: Parity meter for charge qubits: an efficient quantum entangler. Phys. Rev. B 73, 235,331 (2006)

    Article  Google Scholar 

  54. van Velsen J.L., Kindermann M., Beenakker C.W.J.: Dephasing of entangled electron-hole pairs in a degenerate electron gas. Turk. J. Phys. 27, 323–330 (2003)

    Google Scholar 

  55. Verstraete F., Wolf M.M.: Entanglement versus Bell violations and their behavior under local filtering operations. Phys. Rev. Lett. 89, 170,401 (2002)

    Article  Google Scholar 

  56. Vollbrecht K.G.H., Werner R.F.: Why two qubits are special. J. Math. Phys. 41, 6772–6782 (2000)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  57. Wei L.F., xi Liu Y., Nori F.: Testing Bell’s inequality in a constantly coupled Josephson circuit by effective single-qubit operations. Phys. Rev. B 72, 104,516 (2005)

    Google Scholar 

  58. Wei L.F., xi Liu Y., Storcz M.J., Nori F.: Macroscopic Einstein–Podolsky–Rosen pairs in superconducting circuits. Phys. Rev. A 73, 052,307 (2006)

    Article  Google Scholar 

  59. Weihs G., Jennewein T., Simon C., Weinfurter H., Zeilinger A.: Violation of Bell’s inequality under strict Einstein locality conditions. Phys. Rev. Lett. 81, 5039–5043 (1998)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  60. Werner R.F.: Quantum states with Einstein–Podolsky–Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277–4281 (1989)

    Article  ADS  Google Scholar 

  61. Yu T., Eberly J.H.: Finite-time disentanglement via spontaneous emission. Phys. Rev. Lett. 93, 140,404 (2004)

    Google Scholar 

  62. Yu T., Eberly J.H.: Quantum open system theory: bipartite aspects. Phys. Rev. Lett. 97, 140,403 (2006)

    Google Scholar 

  63. Yu Y., Han S., Chu X., Chu S.I., Wang Z.: Coherent temporal oscillations of macroscopic quantum states in a Josephson junction. Science 296, 889–892 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Kofman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kofman, A.G. Optimal conditions for Bell-inequality violation in the presence of decoherence and errors. Quantum Inf Process 11, 269–309 (2012). https://doi.org/10.1007/s11128-011-0242-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-011-0242-1

Keywords

Navigation