Skip to main content
Log in

Diverse Mesorhizobium spp. with unique nodA nodulating the South African legume species of the genus Lessertia

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Legumes of the genus Lessertia have recently been introduced to Australia in an attempt to increase the range of forage species available in Australian farming systems capable of dealing with a changing climate. This study assessed the diversity and the nodulation ability of a collection of Lessertia root nodule bacteria isolated from different agro-climatic areas of the Eastern and Western Capes of South Africa.

Methods

The diversity and phylogeny of 43 strains was determined via the partial sequencing of the dnaK, 16srRNA and nodA genes. A glasshouse experiment was undertaken to evaluate symbiotic relationships between six Lessertia species and 17 rhizobia strains.

Results

The dnaK and 16S rRNA genes of the majority of the strains clustered with the genus Mesorhizobium. The position of the strains at the intra-genus level was incongruent between phylogenies with few exceptions. The nodA genes from Lessertia spp. formed a cluster on their own, separate from the previously known Mesorhizobium nodA sequences. Strains showed differences in their nodulation and nitrogen fixation patterns that could be correlated with nodA gene phylogeny. L. diffusa, L. herbacea and L. excisa nodulated with nearly all the strains examined while L. capitata, L. incana and L. pauciflora were more stringent.

Conclusion

Root nodule bacteria from Lessertia spp. were identified mainly as Mesorhizobium spp. Their nodA genes were unique and correlated with the nodulation and nitrogen fixation patterns of the strains. There were marked differences in promiscuity within Lessertia spp. and within strains of root nodule bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

WSM:

Western soil microbiology

OD:

Optical density

½ LA:

Half lupin agar

References

  • Aguilar OM, López MV, Donato M, Morón B, Soria-Diaz ME, Mateos C, Gil-Serrano A, Sousa C, Megías M (2006) Phylogeny and nodulation signal molecule of rhizobial populations able to nodulate common beans—other than the predominant species Rhizobium etli—present in soils from the northwest of Argentina. Soil Biol Biochem 38:573–586

    Article  CAS  Google Scholar 

  • Alexandre A, Laranjo M, Young JPW, Oliveira S (2008) dnaJ is a useful phylogenetic marker for alphaproteobacteria. Int J Syst Evol Microbiol 58:2839–2849

    Article  PubMed  CAS  Google Scholar 

  • Allen ON, Allen EK (1981) The leguminosae: a source book of characteristics, uses and nodulation. The University of Wisconsin Press, Wisconsin, p 812

    Google Scholar 

  • Andam CP, Mondo SJ, Parker MA (2007) Monophyly of nodA and nifH genes across Texan and Costa Rican populations of Cupriavidus nodule symbionts. Appl Environ Microbiol 73:4686–4690

    Article  PubMed  CAS  Google Scholar 

  • Anderson PML, Hoffmann MT (2007) The impacts of sustained heavy grazing on plant diversity and composition in lowland and upland habitats across the Kamiesberg mountain range in the Succulent Karoo, South Africa. J Arid Environ 70:686–700

    Article  Google Scholar 

  • Ba S, Willems A, De Lajudie P, Roche P, Jeder H, Quatrini P, Neyra M, Ferro M, Promé J-C, Gillis M, Boivin-Masson C, Lorquin J (2002) Symbiotic and taxonomic diversity of rhizobia isolated from Acacia tortilis subsp. raddiana in Africa. Syst Appl Microbiol 25:130–145

    Article  PubMed  CAS  Google Scholar 

  • Balkwill MJ, Balkwill K (1999) The genus Lessertia DC. (Fabaceae-Galegeae) in KwaZulu-Natal (South Africa). S Afr J Bot 65:339–356

    Google Scholar 

  • Boone CM, Olsthoorn MMA, Dakora FD, Spaink HP, Thomas-Oates JE (1999) Structural characterisation of lipo-chitin oligosaccharides isolated from Bradyrhizobium aspalati, microsymbionts of commercially important South African legumes. Carbohydr Res 317:155–163

    Article  PubMed  CAS  Google Scholar 

  • Breebaart L (2003) Feeding selection in three grazing systems in the Nama Karoo. In Conservation Farming Project. National Botanical Institute, South Africa

  • Brenner DJ, Staley JT, Krieg NR (2005) Classification of procaryotic organisms and the concept of bacterial speciation. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology. Springer, New York, pp 27–32

    Chapter  Google Scholar 

  • Broughton WJ, Perret X (1999) Genealogy of legume-Rhizobium symbiosis. Curr Opin Plant Biol 2:305–311

    Article  PubMed  CAS  Google Scholar 

  • Chelo IM, Zé-Zé L, Tenreiro R (2007) Congruence of evolutionary relationships inside the Leuconostoc-Oenococcus-Weissella clade assessed by phylogenetic analysis of the 16SrRNA gene, dnaA, gyrB, rpoC and dnaK. Int J Syst Evol Microbiol 57:276–286

    Article  PubMed  CAS  Google Scholar 

  • Chen W-M, Moulin L, Bontemps C, Vandamme P, Béna G, Boivin-Masson C (2003) Legume symbiotic nitrogen fixation by β-Proteobacteria is widespread in nature. J Bacteriol 185:7266–7272

    Article  PubMed  CAS  Google Scholar 

  • Chen WF, Guan SH, Zhao CT, Yan XR, Man CX, Wang ET, Chen WX (2008) Different Mesorhizobium species associated with Caragana carry similar symbiotic genes and have common host ranges. FEMS Microbiol Lett 283:203–209

    Article  PubMed  CAS  Google Scholar 

  • Cocks PS (2001) Ecology of herbaceous perennial legumes: a review of characteristics that may provide management options for the control of salinity and waterlogging in dryland cropping systems. Aust J Agric Res 52:137–151

    Article  Google Scholar 

  • Cransberg L, McFarlane DJ (1994) Can perennial pastures provide the basis for a sustainable farming system in southern Australia? N Z J Agric Res 37:287–294

    Article  Google Scholar 

  • de Faria SM, Lewis GP, Sprent JI, Sutherland JM (1989) Occurrence of nodulation in the Leguminosae. New Phytol 111:607–619

    Article  Google Scholar 

  • Dear BS, Moore GA, Hughes SJ (2003) Adaptation and potential contribution of temperate perennial legumes to the southern Australian wheatbelt: a review. Aust J Exp Agric 43:1–18

    Article  Google Scholar 

  • Donate-Correa J, León-Barrios M, Hernández M, Pérez-Galdona R, del Arco-Aguilar M (2007) Different Mesorhizobium species sharing the same symbiotic genes nodulate the shrub legume Anagyris latifolia. Syst Appl Microbiol 30:615–623

    Article  PubMed  CAS  Google Scholar 

  • Doolittle WF, Papke RT (2006) Genomics and the bacterial species problem. Genome Biol 7:1–7

    Article  Google Scholar 

  • Doyle JJ, Luckow MA (2003) The rest of the iceberg. Legume diversity and evolution in a phylogenetic context. Plant Physiol 131:900–910

    Article  PubMed  CAS  Google Scholar 

  • Eardly BD, Nour SM, Berkum PV, Selander RK (2005) Rhizobial 16S rRNA and dnaK genes: mosaicism and the uncertain phylogenetic placement of Rhizobium galegae. Appl Environ Microbiol 71:1328–1335

    Article  PubMed  CAS  Google Scholar 

  • Elliott GN, Chen W-M, Bontemps C, Chou J-H, Young JPW, Sprent JI, James EK (2007) Nodulation of Cyclopia spp. (Leguminosae, Papilionoideae) by Burkholderia tuberum. Ann Bot 100:1403–1411

    Article  PubMed  CAS  Google Scholar 

  • Elliott GN, Chou J-H, Chen W-M, Bloemberg GV, Bontemps C, Martínez-Romero E, Velázquez E, Young JPW, Sprent JI, James EK (2009) Burkholderia spp. are the most competitive symbionts of Mimosa, particularly under N-limited conditions. Environ Microbiol 11:762–778

    Article  PubMed  Google Scholar 

  • Gao J, Turner SL, Kan FL, Wang ET, Tan ZY, Qiu YH, Gu J, Terefework Z, Young JPW, Lindström K, Chen WX (2004) Mesorhizobium septentrionale sp. nov. and Mesorhizobium temperatum sp. nov., isolated from Astragalus adsurgens growing in the northern regions of China. Int J Syst Evol Microbiol 54:2003–2012

    Article  PubMed  CAS  Google Scholar 

  • Garau G, Yates RJ, Deiana P, Howieson JG (2009) Novel strains of nodulating Burkholderia have a role in nitrogen fixation with papilionoid herbaceous legumes adapted to acid, infertile soils. Soil Biol Biochem 41:125–134

    Article  CAS  Google Scholar 

  • Gaunt MW, Turner SL, Rigottier-Gois L, Lloyd-Macgilp SA, Young JPW (2001) Phylogenies of atpD and recA support the small subunit rRNA-based classification of rhizobia. Int J Syst Evol Microbiol 51:2037–2048

    Article  PubMed  CAS  Google Scholar 

  • Han TX, Tian CF, Wang ET, Chen WX (2010) Associations among rhizobial chromosomal background, nod genes, and host plants based on the analysis of symbiosis of indigenous rhizobia and wild legumes native to Xinjiang. Microb Ecol 59

  • Hanage WP, Fraser C, Spratt BG (2006) Sequences, sequence clusters and bacterial species. Phil Trans Roy Soc B 361:1917–1927

    Article  Google Scholar 

  • Harvey WH (1862) Leguminosae. In: Harvey WH, Sonder OW (eds) Flora capensis: systematic description of the plants of the Cape Colony, Caffraria and Port Natal. Vol. 2. Hodges, Smith and Co., Dublin, pp 1–285

    Google Scholar 

  • Haukka K, Lindström K, Young JPW (1998) Three phylogenetic groups of nodA and nifH Genes in Sinorhizobium and Mesorhizobium isolates from leguminous trees growing in Africa and Latin America. Appl Environ Microbiol 64:419–426

    PubMed  CAS  Google Scholar 

  • Hirsch AM, Lum MR, Downie JA (2001) What makes the rhizobia-legume symbiosis so special? update on rhizobia-legume symbiosis. Plant Physiol 127:1484–1492

    Article  PubMed  CAS  Google Scholar 

  • Howieson JG (1995) Characteristics of an ideotype acid tolerant pasture legume symbiosis in Mediterranean agriculture. Plant Soil 171:71–76

    Article  CAS  Google Scholar 

  • Howieson JG, Ewing MA, D'Antuono MF (1988) Selection for acid tolerance in Rhizobium meliloti. Plant Soil 105:179–188

    Article  CAS  Google Scholar 

  • Howieson JG, Loi A, Carr SJ (1995) Biserrula pelecinus L.—a legume pasture species with potential for acid, duplex soils which is nodulated by unique root-nodule bacteria. Aust J Agric Res 46:997–1009

    Article  Google Scholar 

  • Howieson JG, O'Hara GW, Carr SJ (2000) Changing roles for legumes in Mediterranean agriculture: developments from an Australian perspective. Field Crop Res 65:107–122

    Article  Google Scholar 

  • Howieson JG, Yates RJ, Foster KJ, Real D, Besier RB (2008) Prospects for the future use of legumes. In: Dilworth MJ, James EK, Sprent JI, Newton WE (eds) Nitrogen-fixing leguminous symbioses. Springer, Dordrecht, pp 363–393

    Google Scholar 

  • Jarabo-Lorenzo A, Pérez-Galdona R, Donate-Correa J, Rivas R, Velázquez E, Hernández M, Temprano F, Martínez-Molina E, Ruiz-Argueso T, León-Barrios M (2003) Genetic diversity of bradyrhizobial populations from diverse geographic origins that nodulate Lupinus spp. and Ornithopus spp. Syst Appl Microbiol 26:611–623

    Article  PubMed  CAS  Google Scholar 

  • Jarvis BDW, Van Berkum P, Chen WX, Nour SM, Fernández MP, Cleyet-Marel J-C, Gillis M (1997) Transfer of Rhizobium loti, Rhizobium huakuii, Rhizobium ciceri, Rhizobium mediterraneum, and Rhizobium tianshanense to Mesorhizobium gen. nov. Int J Syst Bacteriol 47:895–898

    Article  Google Scholar 

  • Jaspers E, Overmann J (2004) Ecological significance of microdiversity: identical 16S rRNA gene sequences can be found in bacteria with highly divergent genomes and ecophysiologies. Appl Environ Microbiol 70:4831–4839

    Article  PubMed  CAS  Google Scholar 

  • Joubert E, Gelderblom WCA, Louw A, de Beer D (2008) South African herbal teas: Aspalathus linearis, Cyclopia spp. and Athrixia phylicoides—a review. J Ethnopharmacol 119:376–412

    Article  PubMed  CAS  Google Scholar 

  • Kalita M, Stępkowski T, Lotocka B, Malek W (2006) Phylogeny of nodulation genes and symbiotic properties of Genista tinctoria bradyrhizobia. Arch Microbiol 186:87–97

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi H, Broughton WJ (2008) Fine-tuning of symbiotic genes in rhizobia: flavonoid signal transduction cascade. In: Dilworth MJ, James EK, Sprent JI, Newton WE (eds) Nitrogen-fixing leguminous symbioses. Springer, Dordrecht, pp 117–152

    Google Scholar 

  • Konstantinidis KT, Tiedje JM (2005) Towards a genome-based taxonomy for prokaryotes. J Bacteriol 187:6258–6264

    Article  PubMed  CAS  Google Scholar 

  • Kwon S-W, Park J-Y, Kim J-S, Kang J-W, Cho Y-H, Lim C-K, Parker MA, Lee G-B (2005) Phylogenetic analysis of the genera Bradyrhizobium, Mesorhizobium, Rhizobium and Sinorhizobium on the basis of 16S rRNA gene and internally transcribed spacer region sequences. Int J Syst Evol Microbiol 55:263–270

    Article  PubMed  CAS  Google Scholar 

  • Laguerre G, Van Berkum P, Amarger N, Prévost D (1997) Genetic diversity of rhizobial symbionts isolated from legume species within the genera Astragalus, Oxytropis, and Onobrychis. Appl Environ Microbiol 63:4748–4758

    PubMed  CAS  Google Scholar 

  • Laguerre G, Nour SM, Macheret V, Sanjuan J, Drouin P, Amarger N (2001) Classification of rhizobia based on nodC and nifH gene analysis reveals a close phylogenetic relationship among Phaseolus vulgaris symbionts. Microbiology 147:981–993

    PubMed  CAS  Google Scholar 

  • Lecointre G, Le Guyader H (2006) The tree of life: a phylogenetic classification. The Belknap Press of Harvard University Press, Massachusetts

    Google Scholar 

  • Lindeque MI (2005) Diversity of root nodule bacteria associated with Phaseolus coccineus and Phaseolus vulgaris species in South Africa. MSc Thesis, University of Pretoria, Pretoria, South Africa

  • Lock JM, Schrire BD (2005) Tribe galegae. In: Lewis G, Schrire B, Mackinder B, Lock JM (eds) Legumes of the world. Royal Botanic Gardens, Kew, pp 475–487

    Google Scholar 

  • Martens M, Delaere M, Coopman R, De Vos P, Gillis M, Willems A (2007) Multilocus sequence analysis of Ensifer and related taxa. Int J Syst Evol Microbiol 57:489–503

    Article  PubMed  CAS  Google Scholar 

  • Martiny JBH, Bohannan BJM, Brown JH, Colwell RK, Fuhrman JA, Green JL, Horner-Devine MC, Kane M, Krumins JA, Kuske CR, Morin PJ, Naeem S, Ovreas L, Reysenbach A, Smith VH, Staley JT (2006) Microbial biogeography: putting microorganisms on the map. Nat Rev Microbiol 4:102–112

    Article  PubMed  CAS  Google Scholar 

  • Maunoury N, Kondorosi A, Kondorosi E, Mergaert P (2008) Cell biology of nodule infection and development. In: Dilworth MJ, James EK, Sprent JI, Newton WE (eds) Nitrogen-fixing leguminous symbioses. Springer, Dordrecht, pp 153–189

    Google Scholar 

  • McArthur JV (2006) Microbial ecology: an evolutionary approach. Academic, San Diego, p 416

    Google Scholar 

  • Moschetti G, Peluso A, Protopapa A, Anastasio M, Pepe O, Defez R (2005) Use of nodulation pattern, stress tolerance, nodC gene amplification, RAPD-PCR and RFLP–16S rDNA analysis to discriminate genotypes of Rhizobium leguminosarum biovar viciae. Syst Appl Microbiol 28:619–631

    Article  PubMed  CAS  Google Scholar 

  • Moulin L, Béna G, Boivin-Masson C, Stępkowski T (2004) Phylogenetic analyses of symbiotic nodulation genes support vertical and lateral gene co-transfer within Bradyrhizobium genus. Mol Phylogenet Evol 30:720–732

    Article  PubMed  CAS  Google Scholar 

  • Muofhe ML, Dakora FD (1999) Nitrogen nutrition in nodulated field plants of the shrub tea legume Aspalathus linearis assessed using 15N natural abundance. Plant Soil 209:181–186

    Article  CAS  Google Scholar 

  • Nandasena KG, O'Hara GW, Tiwari RP, Willems A, Howieson JG (2009) Mesorhizobium australicum sp. nov. and Mesorhizobium opportunistum sp. nov., isolated from Biserrula pelecinus L. in Australia. Int J Syst Evol Microbiol 59:2140–2147

    Article  PubMed  CAS  Google Scholar 

  • Nkonki T (2003) Lessertia DC. National Botanical Institute (South Africa), Pretoria

  • Nkonki T (2004) Lessertia DC. National Herbarium, Pretoria. http://www.plantzafrica.com/plantklm/lessertia.htm. Accessed 24 July 2008

  • Nour SM, Cleyet-Marel J-C, Normand P, Fernández MP (1995) Genomic heterogeneity of strains nodulating chickpeas (Cicer arietinum L.) and description of Rhizobium mediterraneum sp. nov. Int J Syst Bacteriol 45:640–648

    Article  PubMed  CAS  Google Scholar 

  • Ochman H, Lawrence JG, Groisman EA (2000) Lateral gene transfer and the nature of bacterial innovation. Nature 405:299–304

    Article  PubMed  CAS  Google Scholar 

  • Olsen GJ, Woese CR, Overbeek R (1994) The winds of (evolutionary) change: breathing new life into microbiology. J Bacteriol 176:1–6

    PubMed  CAS  Google Scholar 

  • Ormeño-Orrillo E, Vinuesa P, Zúñiga-Dávila D, Martínez-Romero E (2006) Molecular diversity of native bradyrhizobia isolated from Lima bean (Phaseolus lunatus L.) in Peru. Syst Appl Microbiol: 253–262

  • Parker MA (2004) rRNA and dnaK relationships of Bradyrhizobium sp. nodule bacteria from four papilionoid legume trees in Costa Rica. Syst Appl Microbiol 27:334–342

    Article  PubMed  CAS  Google Scholar 

  • Parker MA, Kennedy DA (2006) Diversity and relationships of bradyrhizobia from legumes native to eastern North America. Can J Microbiol 52:1148–1157

    Article  PubMed  CAS  Google Scholar 

  • Parker MA, Lafay B, Burdon JJ, van Berkum P (2002) Conflicting phylogeographic patterns in rRNA and nifD indicate regionally restricted gene transfer in Bradyrhizobium. Microbiology 148:2557–2565

    PubMed  CAS  Google Scholar 

  • Perret X, Staehelin C, Broughton WJ (2000) Molecular basis of symbiotic promiscuity. Microbiol Mol Biol Rev 64:180–201

    Article  PubMed  CAS  Google Scholar 

  • Reeve WG, Chain P, O'Hara GW, Ardley JK, Nandasena KG, Bräu L, Tiwari RP, Malfatti S, Kiss H, Lapidus A, Copeland A, Nolan M, Land M, Hauser L, Chang Y-J, Ivanova N, Mavromatis K, Markowitz V, Kyrpides N, Gollagher M, Yates RJ, Dilworth MJ, Howieson JG (2010) Complete genome sequencing of the Medicago microsymbiont Ensifer (Sinorhizobium) medicae strain WSM419. Stand Genomic Sci 2:77–86

    Article  PubMed  Google Scholar 

  • Richardson AE, Viccars LA, Watson JM, Gibson AH (1995) Differentiation of Rhizobium strains using the polymerase chain reaction with random and directed primers. Soil Biol Biochem 27:515–524

    Article  CAS  Google Scholar 

  • Roche P, Maillet F, Plazanet C, Debelle F, Ferro M, Truchet G, Prome J-C, Denarie J (1996) The common nodABC genes of Rhizobium meliloti are host-range determinants. Proc Natl Acad Sci U S A 93:15305–15310

    Article  PubMed  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Stępkowski T, Czaplińska M, Miedzinska K, Moulin L (2003a) The variable part of the dnaK gene as an alternative marker for phylogenetic studies of rhizobia and related alpha proteobacteria. Syst Appl Microbiol 26:483–494

    Article  PubMed  Google Scholar 

  • Stępkowski T, Świderska A, Miedzinska K, Czaplińska M, Świderski M, Biesiadka J, Legocki AB (2003b) Low sequence similarity and gene content of symbiotic clusters of Bradyrhizobium sp. WM9 (Lupinus) indicate early divergence of “lupin” lineage in the genus Bradyrhizobium. Antonie Leeuwenhoek 84:115–124

    Article  PubMed  Google Scholar 

  • Stępkowski T, Moulin L, Krzyżańska A, McInnes A, Law IJ, Howieson J (2005) European origin of Bradyrhizobium populations infecting lupins and serradella in soils of Western Australia and South Africa. Appl Environ Microbiol 71:7041–7052

    Article  PubMed  Google Scholar 

  • Stępkowski T, Hughes CE, Law IJ, Markiewicz L, Gurda D, Chlebicka A, Moulin L (2007) Diversification of lupine Bradyrhizobium strains: evidence from nodulation gene trees. Appl Environ Microbiol 73:3254–3264

    Article  PubMed  Google Scholar 

  • Sullivan JT, Patrick HN, Lowther WL, Scott DB, Ronson CW (1995) Nodulating strains of Rhizobium loti arise through chromosomal symbiotic gene transfer in the environment. Proc Natl Acad Sci U S A 92:8985–8989

    Article  PubMed  CAS  Google Scholar 

  • Suominen L, Roos C, Lortet G, Paulin L, Lindström K (2001) Identification and structure of the Rhizobium galegae common nodulation genes: evidence for horizontal gene transfer. Mol Biol Evol 18:907–916

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Nei M, Kumar S (2004) Prospects for inferring very large phylogenies by using the neighbor-joining method. PNAS 101:11030–11035

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol. doi:10.1093/molbev/msm092

  • van Berkum P, Terefework Z, Paulin L, Suomalainen S, Lindström K, Eardly BD (2003) Discordant phylogenies within the rrn loci of rhizobia. J Bacteriol 185:2988–2998

    Article  PubMed  Google Scholar 

  • Vinuesa P, León-Barrios M, Silva C, Willems A, Jarabo-Lorenzo A, Pérez-Galdona R, Werner D, Martínez-Romero E (2005a) Bradyrhizobium canariense sp. nov., an acid tolerant endosymbiont that nodulates endemic genistoid legumes (Papilionoideae: Genisteae) from the Canary Islands, along with Bradyrhizobium japonicum bv. genistearum, Bradyrhizobium genospecies alpha and Bradyrhizobium genospecies beta. Int J Syst Evol Microbiol 55:569–575

    Article  PubMed  CAS  Google Scholar 

  • Vinuesa P, Silva C, Werner D, Martínez-Romero E (2005b) Population genetics and phylogenetic inference in bacterial molecular systematics: the roles of migration and recombination in Bradyrhizobium species cohesion and delineation. Mol Phylogenet Evol 34:29–54

    Article  PubMed  CAS  Google Scholar 

  • Wei GH, Chen WM, Young JPW, Bontemps C (2009) A new clade of Mesorhizobium nodulating Alhagi sparsifolia system. Appl Microbiol 32:8–16

    Article  CAS  Google Scholar 

  • Wernegreen JJ, Riley MA (1999) Comparison of the evolutionary dynamics of symbiotic and housekeeping loci: a case for the genetic coherence of rhizobial lineages. Mol Biol Evol 16:98–113

    Article  PubMed  CAS  Google Scholar 

  • Wernegreen JJ, Harding EE, Riley MA (1997) Rhizobium gone native: unexpected plasmid stability of indigenous Rhizobium leguminosarum. Proc Natl Acad Sci U S A 94:5483–5488

    Article  PubMed  CAS  Google Scholar 

  • Willems A (2006) The taxonomy of rhizobia: an overview. Plant Soil 287:3–14

    Article  CAS  Google Scholar 

  • Yan XR, Chen WF, Fu JF, Lu YL, Xue CY, Sui XH, Li Y, Wang ET, Chen WX (2007) Mesorhizobium spp. are the main microsymbionts of Caragana spp. grown in Liaoning Province of China. FEMS Microbiol Lett 271:265–273

    Article  PubMed  CAS  Google Scholar 

  • Yanagi M, Yamasato K (1993) Phylogenetic analysis of the family Rhizobiaceae and related bacteria by sequencing of 16S rRNA gene using PCR and DNA sequencer. FEMS Microbiol Lett 107:115–120

    Article  PubMed  CAS  Google Scholar 

  • Yates RJ (2008) Symbiotic interactions of geographically diverse annual and perennial Trifolium spp. with Rhizobium leguminosarum bv. trifolii. PhD thesis, Murdoch University, Perth, Australia

  • Zeigler DR (2003) Gene sequences useful for predicting relatedness of whole genomes in bacteria. Int J Syst Evol Microbiol 53:1893–1900

    Article  PubMed  CAS  Google Scholar 

  • Zhang XX, Kosier B, Priefer UB (2001) Genetic diversity of indigenous Rhizobium leguminosarum bv. viciae isolates nodulating two different host plants during soil restoration with alfalfa. Mol Ecol 10:2297–2305

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mrs. Regina Carr (Centre for Rhizobium studies, Murdoch University) for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Macarena Gerding.

Additional information

Responsible Editor: Euan K. James.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerding, M., O’Hara, G.W., Bräu, L. et al. Diverse Mesorhizobium spp. with unique nodA nodulating the South African legume species of the genus Lessertia . Plant Soil 358, 385–401 (2012). https://doi.org/10.1007/s11104-012-1153-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-012-1153-3

Keywords

Navigation