Skip to main content
Log in

Gene expression, cellular localisation and function of glutamine synthetase isozymes in wheat (Triticum aestivum L.)

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

We present the first cloning and study of glutamine synthetase (GS) genes in wheat (Triticum aestivum L.). Based on sequence analysis, phylogenetic studies and mapping data, ten GS sequences were classified into four sub-families: GS2 (a, b and c), GS1 (a, b and c), GSr (1 and 2) and GSe (1 and 2). Phylogenetic analysis showed that the wheat GS sub-families together with the GS genes from other monocotyledonous species form four distinct clades. Immunolocalisation studies in leaves, stems and rachis in plants at flowering showed GS protein to be present in parenchyma, phloem companion and perifascicular sheath cells. In situ localisation confirmed that GS1 transcripts were present in the perifascicular sheath cells whilst those for GSr were confined to the vascular cells. Studies of the expression and protein profiles showed that all GS sub-families were differentially expressed in the leaves, peduncle, glumes and roots. Expression of GS genes in leaves was developmentally regulated, with both GS2 and GS1 assimilating or recycling ammonia in leaves during the period of grain development and filling. During leaf senescence the cytosolic isozymes, GS1 and GSr, were the predominant forms, suggesting major roles in assimilating ammonia during the critical phases of remobilisation of nitrogen to the grain. A preliminary analysis of three different wheat genotypes showed that the ratio of leaf GS2 protein to GS1 protein was variable. Use of this genetic variation should inform future efforts to modulate this enzyme for pre-breeding efforts to improve nitrogen use in wheat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

GS:

Glutamine synthetase

QTL:

Quantitative trait loci

DH:

Doubled haploid

qRT-PCR:

Real-time reverse transcription polymerase chain reaction

RACE:

Rapid amplification of cDNA ends

References

  • Becker TW, Caboche M, Carrayol E, Hirel B (1992) Nucleotide sequence of a tobacco cDNA encoding plastidic glutamine synthetase and light-inducibility, organ specificity and diurnal rhythmicity in the expression of the corresponding genes of tobacco and tomato. Plant Mol Biol 19:367–379

    Article  PubMed  CAS  Google Scholar 

  • Biesiadka J, Legocki AB (1997) Evolution of the glutamine synthetase gene in plants. Plant Sci 128:51–58

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Brugière N, Dubois F, Limami A, Lelandais M, Roux Y, Sangwan R, Hirel B (1999) Glutamine synthetase in the phloem plays a major role in controlling proline production. Plant Cell 11:1995–2011

    Article  PubMed  Google Scholar 

  • Canovas F, Avila C, Canton FR, Canas R, de la Torre F (2007) Ammonium assimilation and amino acid metabolism in conifers. J Exp Bot 58:2307–2318

    Article  PubMed  CAS  Google Scholar 

  • Choi YA, Kim SG, Kwon YM (1999) The plastidic glutamine synthetase activity is directly modulated by means of redox change at two unique cysteine residues. Plant Sci 149:175–182

    Article  CAS  Google Scholar 

  • Clemente MT, Marquez AJ (1999a) Functional importance of Asp56 from the alpha-polypeptide of Phaseolus vulgaris glutamine synthetase—an essential residue for transferase but not for biosynthetic enzyme activity. Eur J Biochem 264:453–460

    Article  PubMed  CAS  Google Scholar 

  • Clemente MT, Marquez AJ (1999b) Site-directed mutagenesis of Glu-297 from the alpha-polypeptide of Phaseolus vulgaris glutamine synthetase alters kinetic and structural properties and confers resistance to L-methionine sulfoximine. Plant Mol Biol 40:835–845

    Article  PubMed  CAS  Google Scholar 

  • Clemente MT, Marquez AJ (2000) Site-directed mutagenesis of Cys-92 from the alpha-polypeptide of Phaseolus vulgaris glutamine synthetase reveals that this highly conserved residue is not essential for enzyme activity but it is involved in thermal stability. Plant Sci 154:189–197

    Article  PubMed  CAS  Google Scholar 

  • Cullimore JV, Miflin BJ (1984) Immunological studies on glutamine synthetase using antisera raised to the 2 plant forms of the enzyme from Phaseolus root nodules. J Exp Bot 35:581–587

    Article  CAS  Google Scholar 

  • Doyle JJ (1991) Evolution of higher plant glutamine synthetase genes tissue specificity as a criterion for predicting orthology. Mol Biol Evol 8:366–377

    CAS  Google Scholar 

  • Feller U, Fischer A (1994) Nitrogen metabolism in senescing leaves. Crit Rev Plant Sci 13:241–273

    Article  CAS  Google Scholar 

  • Finnemann J, Schjoerring JK (2000) Post-translational regulation of cytosolic glutamine synthetase by reversible phosphorylation and 14-3-3 protein interaction. Plant J 24:171–181

    Google Scholar 

  • Forde BG, Cullimore JV (1989) The molecular biology of glutamine synthetase in higher plants. Oxf Surv Plant Mol Cell Biol 6:247–296

    CAS  Google Scholar 

  • Galais A, Hirel B (2004) An approach to the genetics of nitrogen use efficiency in maize. J Exp Bot 55:295–306

    Article  Google Scholar 

  • Gibon Y, Blaesing OE, Hannemann J, Carillo P, Hohne M, Hendriks JHM, Palacios N, Cross J, Selbig J, Stitt M (2004) A robot-based platform to measure multiple enzyme activities in Arabidopsis using a set of cycling assays: comparison of changes of enzyme activities and transcript levels during diurnal cycles and in prolonged darkness. Plant Cell 16:3304–3325

    Article  PubMed  CAS  Google Scholar 

  • Good AG, Shrawat AK, Muench DG (2004) Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production? Trends Plant Sci 9:597–605

    Article  PubMed  CAS  Google Scholar 

  • Guo Y, Gan S (2006) AtNAP, a NAC family transcription factor, has an important role in leaf senescence. Plant J 46:601–612

    Article  PubMed  CAS  Google Scholar 

  • Habash DZ, Massiah AJ, Rong HL, Wallsgrove RM, Leigh RA (2001) The role of cytosolic glutamine synthetase in wheat. Ann Appl Biol 138:83–89

    Article  CAS  Google Scholar 

  • Habash DZ, Bernard S, Schondelmaier J, Weyen J, Quarrie SA (2007) A genetic study of nitrogen use in hexaploid wheat in relation to N utilisation, development and yield. Theor Appl Genet 114:403–419

    Article  PubMed  CAS  Google Scholar 

  • Hirel B, Lea PJ (2001) Ammonia assimilation. In: Lea PJ, Morot-Gaudry J-F (eds) Plant nitrogen. Springer-Verlag, Berlin, pp 79–99

    Google Scholar 

  • Hirel B, Weatherley C, Cretin C, Bergounioux C, Gadal P (1984) Multiple subunit composition of glutamine synthetase of Nicotiana tabacum L. Plant Physiol 74:448–450

    PubMed  CAS  Google Scholar 

  • Hirel B, Bertin P, Quillere I, Bourdoncle W, Attagnant C, Dellay C, Gouy A, Cadiou S, Retailliau C, Falque M, Gallais A (2001) Towards a better understanding of the genetic and physiological basis for nitrogen use efficiency in maize. Plant Physiol 125:1258–1270

    Article  PubMed  CAS  Google Scholar 

  • Hirel B, Martin A, Terce-Laforgue T, Gonzalez-Moro M, Estavillo J-M (2005) Physiology of maize I: a comprehensive and integrated view of nitrogen metabolism in a C4 plant. Physiol Plant 124:167–177

    Article  CAS  Google Scholar 

  • Hirel B, Le Gouis J, Ney B, Gallais A (2007) The challenge of improving nitrogen use efficiency in crop plants: towards a more central role of genetic variability and quantitative genetics within integrated approaches. J Exp Bot 58:2369–2387

    Article  PubMed  CAS  Google Scholar 

  • Hortensteiner S, Feller U (2002) Nitrogen metabolism and remobilization during senescence. J Exp Bot 53:927–937

    Article  PubMed  CAS  Google Scholar 

  • Ishiyama K, Inoue E, Tabuchi M, Yamaya T, Takahashi H (2004a) Biochemical background and compartmentalized functions of cytosolic glutamine synthetase for active ammonium assimilation in rice roots. Plant Cell Physiol 45:1640–1647

    Article  PubMed  CAS  Google Scholar 

  • Ishiyama K, Inoue E, Watanabe-Takahashi A, Obara M, Yamaya T, Takahashi H (2004b) Kinetic properties and ammonium-dependent regulation of cytosolic isoenzymes of glutamine synthetase in Arabidopsis. J Biol Chem 279:16598–16605

    Article  PubMed  CAS  Google Scholar 

  • Ishiyama K, Inoue E, Yamaya T, Takahashi H (2006) Gln49 and Ser174 residues play critical roles in determining the catalytic efficiencies of plant glutamine synthetase. Plant Cell Physiol 47:299–303

    Article  PubMed  CAS  Google Scholar 

  • Jain M, Nijhawan A, Tyagi AK, Khurana JP (2006) Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochem Biophys Res Commun 345:646–651

    Article  PubMed  CAS  Google Scholar 

  • Kamachi K, Yamaya T, Mae T, Ojima K (1991) A role for glutamine synthetase in the remobilization of leaf nitrogen during natural senescence in rice leaves. Plant Physiol 96:411–417

    PubMed  CAS  Google Scholar 

  • Kamachi K, Yamaya T, Hayakawa T, Mae T, Ojima K (1992) Changes in cytosolic glutamine synthetase polypeptide and its messenger RNA in a leaf blade of rice plants during natural senescence. Plant Physiol 98:1323–1329

    PubMed  CAS  Google Scholar 

  • Khan S, Andraloj PJ, Lea PJ, Parry MAJ (1999) 2′-carboxy-D-arabinitol 1-phosphate (CA1P) protects ribulose-1,5-bisphosphate carboxylase/oxygenase against proteolytic breakdown. Eur J Biochem 266:840–847

    Article  PubMed  CAS  Google Scholar 

  • Kichey T, Le Gouis J, Sangwan B, Hirel B, Dubois F (2005) Changes in the cellular and subcellular localization of glutamine synthetase and glutamate dehydrogenase during flag leaf senescence in wheat (Triticum aestivum L.). Plant Cell Physiol 46:964–974

    Article  PubMed  CAS  Google Scholar 

  • Kichey T, Heumez E, Pocholle D, Pageau K, Vanacker H, Dubois F, Le Gouis J, Hirel B (2006) Combined agronomic and physiological aspects of nitrogen management in wheat highlight a central role for glutamine synthetase. New Phytol 169:265–278

    Article  PubMed  CAS  Google Scholar 

  • Kuo J, O’Brian TP, Canny MJ (1974) Pit-field distribution, plasmodesmatal frequency, and assimilate flux in the mestome sheath cells of wheat leaves. Planta 121:97–118

    Article  Google Scholar 

  • Lea PJ, Blackwell RD, Chen FL and Hecht U (1990) Enzymes of ammonia assimilation. In: Lea PJ (ed) Methods in plant biochemistry, vol 3. New York, Academic Press, pp 257–267

  • Li MG, Villemur R, Hussey PJ, Silflow CD, Gantt JS, Snustad DP (1993) Differential expression of six glutamine synthetase genes in Zea mays. Plant Mol Biol 23:401–407

    Article  PubMed  CAS  Google Scholar 

  • Limami A, De Vienne D (2001) Natural genetic variability in nitrogen metabolism. In: Lea PJ, Morot-Gaudry J-F (eds) Plant nitrogen. Springer-Verlag, Berlin, pp 369–378

    Google Scholar 

  • Lopes MS, Cortadellas N, Kichey T, Dubois F, Habash DZ, Araus JL (2006) Wheat nitrogen metabolism during grain filling: comparative role of glumes and the flag leaf. Planta 225:165–181

    Article  PubMed  CAS  Google Scholar 

  • Martin A, Lee J, Kichey T, Gerentes D, Zivy M, Tatout C, Dubois F, Balliau T, Valot B, Davanture M, Tercé-Laforgue T, Quilleré I, Coque M, Gallais A, Gonzalez-Moro MB, Bethencourt L, Habash DZ, Lea PJ, Charcosset A, Perez P, Murigneux A, Sakakibara H, Edwards KJ, Hirel B (2006) Two cytosolic glutamine synthetase isoforms of maize are specifically involved in the control of grain production. Plant Cell 18:3252–3274

    Article  PubMed  CAS  Google Scholar 

  • Masclaux C, Quillere I, Gallais A, Hirel B (2001) The challenge of remobilisation in plant nitrogen economy. A survey of physio-agronomic and molecular approaches. Ann Appl Biol 138:69–81

    Article  CAS  Google Scholar 

  • McNally S, Hirel B, Gadal P, Mann AF, Stewart GR (1983) Glutamine synthetases of higher plants—evidence for specific isoform content related to their possible physiological role and their compartmentation within the leaf. Plant Physiol 72:22–25

    PubMed  CAS  Google Scholar 

  • Miflin BJ, Habash DZ (2002) The role of glutamine synthetase and glutamate dehydrogenase in nitrogen assimilation and possibilities for improvement in the nitrogen utilization of crops. J Exp Bot 53:979–987

    Article  PubMed  CAS  Google Scholar 

  • Obara M, Sato T, Sasaki S, Kashiba K, Nagano A, Nakamura I, Ebitani T, Yano M, Yamaya T (2004) Identification and characterization of a QTL on chromosome 2 for cytosolic glutamine synthetase content and panicle number in rice. Theor Appl Genet 110:1–11

    Article  PubMed  CAS  Google Scholar 

  • Ortega JL, Roche D, Sengupta-Gopalan C (1999) Oxidative turnover of soybean root glutamine synthetase. In vitro and in vivo studies. Plant Physiol 119:1483–1495

    Article  PubMed  CAS  Google Scholar 

  • Pereira S, Pissara J, Sunkel C, Salema R (1995) Tissue-specific distributin of glutamine synthetase in potato tubers. Ann Bot 77:429–432

    Article  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:2002–2007

    Article  Google Scholar 

  • Quarrie SA, Steed A, Calestani C, Semikhodskii A, Lebreton C, Chinoy C, Steele N, Pljevljakusic D, Waterman E, Weyen J, Schondelmaier J, Habash DZ, Farmer P, Saker L, Clarkson DT, Abugalieva A, Yessimbekova M, Turuspekov Y, Abugalieva S, Tuberosa R, Sanguineti MC, Hollington PA, Aragues R, Royo A, Dodig D (2005) A high-density genetic map of hexaploid wheat (Triticum aestivum L.) from the cross Chinese Spring × SQ1 and its use to compare QTLs for grain yield across a range of environments. Theor Appl Genet 110:865–880

    Article  PubMed  CAS  Google Scholar 

  • Ramakers C, Ruijter JM, Deprez RHL, Moorman AFM (2003) Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett 339:62–66

    Article  PubMed  CAS  Google Scholar 

  • Sakakibara H, Kawabata S, Takahashi H, Hase T, Sugiyama T (1992) Molecular cloning of the family of glutamine synthetase genes from maize, expression of genes for glutamine synthetase and ferredoxin-dependent glutamate synthase in photosynthetic and nonphotosynthetic tissues. Plant Cell Physiol 33:49–58

    CAS  Google Scholar 

  • Sakurai N, Hayakawa T, Nakamura T, Yamaya T (1996) Changes in the cellular localization of cytosolic glutamine synthetase protein in vascular bundles of rice leaves at various stages of development. Planta 200:306–311

    Article  CAS  Google Scholar 

  • Sakurai N, Katayama Y, Yamaya T (2001) Overlapping expression of cytosolic glutamine synthetase and phenylalanine ammoni-lyase in immature leaf blades of rice. Physiol Plant 113:400–408

    Article  PubMed  CAS  Google Scholar 

  • Schachtman DP, Schroeder JI (1994) Structure and transport mechanism of a high-affinity potassium uptake transporter from higher plants. Nature 370:655–658

    Article  PubMed  CAS  Google Scholar 

  • Schulz A (1998) Phloem: structure relates to function. Prog Bot 59:430–477

    Google Scholar 

  • Tabuchi M, Sugiyama K, Ishiyama K, Inoue E, Sato T, Takahashi H, Yamaya T (2005) Severe reduction in growth rate and grain filling of rice mutants lacking OsGS1;1, a cytosolic glutamine synthetase1;1. Plant J 42:641–651

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Tobin AK, Yamaya T (2001) Cellular compartmentation of ammonium assimilation in rice and barley. J Exp Bot 52:591–604

    Article  PubMed  CAS  Google Scholar 

  • Tobin AK, Ridley SM, Stewart GR (1985) Changes in the activities of chloroplast and cytosolic isoenzymes of glutamine synthetase during normal leaf growth and plastid development in wheat. Planta 163:544–548

    Article  CAS  Google Scholar 

  • Unno H, Uchida T, Sugawara H, Kurisu G, Sugiyama T, Yamaya T, Sakakibara H, Hase T, Kusunoki M (2006) Atomic structure of plant glutamine synthetase: a key enzyme for plant productivity. J Biol Chem 281:29287–29296

    Article  PubMed  CAS  Google Scholar 

  • Vernon LP (1960) Spectrophotometric determination of chlorophylls and pheophytins in plant extracts. Anal Chem 32:1144–1150

    Article  CAS  Google Scholar 

  • Wallsgrove RM, Turner JC, Hall NP, Kendall AC, Bright SWJ (1987) Barley mutants lacking chloroplast glutamine synthetase. Biochemical and genetic analysis. Plant Physiol 83:155–158

    Article  PubMed  CAS  Google Scholar 

  • Yamaya T, Obara M, Nakajima H, Sasaki S, Hayakawa T, Sato T (2002) Genetic manipulation and quantitative-trait loci mapping for nitrogen recycling in rice. J Exp Bot 53:917–925

    Article  PubMed  CAS  Google Scholar 

  • Zadoks JC, Chang TT, Konzak CF (1974) A decimal code for the growth stages of cereals. Weed Res 14:415–421

    Article  Google Scholar 

Download references

Acknowledgements

We thank Peter J. Lea for useful discussions. This work was funded by an EU-FPV project ‘SUSTAIN’ QLK5-CT-2001-01461. Rothamsted Research is grant aided by the Biotechnology and Biological Sciences Research Council of the UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimah Z. Habash.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

Sequences of primers used in RACE I: primers for cloning experiments (DOC 76 kb)

Table S2

Sequences of primers and probes for TaqMan assays. Nucleotides in bold and underlined were Locked Nucleic Acid (LNA) bases. Primers were designed not to discriminate between possible homeoalleles (DOC 33 kb)

Fig. S1

Transmission electron microscopic immunolocalisation using pre immune serum for GS in leaf parenchyma cell (A). In situ localisation of sense probes for GS1 in leaf (B) and stem (C) tissue. M, mitochondria; pa, parenchyma; pl, plastid; vb, vascular bundle. Bars: 0.5 μm (A) and 100 μm (B, C) (TIF 3974 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bernard, S.M., Møller, A.L.B., Dionisio, G. et al. Gene expression, cellular localisation and function of glutamine synthetase isozymes in wheat (Triticum aestivum L.). Plant Mol Biol 67, 89–105 (2008). https://doi.org/10.1007/s11103-008-9303-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-008-9303-y

Keywords

Navigation