Skip to main content
Log in

Molecular characterization of two Arabidopsis thaliana glycosyltransferase mutants, rra1 and rra2, which have a reduced residual arabinose content in a polymer tightly associated with the cellulosic wall residue

Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Two putative glycosyltransferases in Arabidopsis thaliana, designated reduced residual arabinose-1 and -2 (RRA1 and RRA2), are characterized at the molecular level. Both genes are classified in CAZy GT-family-77 and are phylogenetically related to putative glycosyltranferases of Chlamydomonas reinhardtii. The expression pattern of the two genes was analyzed by semi-quantitative RT-PCR using mRNA extracted from various organs of bolting Arabidopsis thaliana plants. In addition, promoter::gusA analysis of transgenic Arabidopsis thaliana containing a fusion between either the RRA-1 or -2 promoter fragment and the gusA reporter gene showed that whereas the RRA1 promoter was primarily active in the apical meristem, the expression pattern of the RRA2 promoter was more diverse but also highly active in the meristematic region. In addition, T-DNA mutant insertion lines of both RRA-1 and -2, were identified and characterized at the molecular and biochemical level. Monosaccharide compositional analyses of cell wall material isolated from the meristematic region showed a ca. 20% reduction in the arabinose content in the insoluble/undigested cell wall residue after enzymatic removal of xyloglucan and pectic polysaccharides. These data indicate that both RRA-1 and -2 play a role in the arabinosylation of cell wall component(s).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Abbreviations

a.a.:

Amino acid

AG:

Arabinogalactan

AG II:

Arabinogalactan type II

AGP:

Arabinogalactan-proteins

CAZy:

Carbohydrate-Active enZYmes

CW:

Cell wall

EST:

Expressed sequence tag

GT:

Glycosyltransferase

HG:

Homogalacturonan

RG I:

Rhamnogalacturonan I

RG II:

Rhamnogalacturonan II

XG:

Xylogalacturonan

XEG:

Xyloglucanase

GUS:

β-glucronidase

References

  • Abdulrazzak N, Pollet B, Ehlting J, Larsen K, Asnaghi C, Ronseau S, Proux C, Erhardt M, Seltzer V, Renou JP, Ullmann P, Pauly M, Lapierre C, Werck-Reichhart D (2005) A coumaroyl-ester-3-hydroxylase insertion mutant reveals the existence of nonredundant meta-hydroxylation pathways and essential roles for phenolic precursors in cell expansion and plant growth. Plant Physiol 140:30–48

    Article  PubMed  CAS  Google Scholar 

  • Akiyama Y, Kato K (1977) Structure of hydroxyproline-arabinoside from tobacco cells. Agricultural and Biological Chemistry 41(1):79–81

    CAS  Google Scholar 

  • Albersheim P, Nevins DJ, English PD, Karr A (1967) A method for the analysis of sugars in plant cell wall polysaccharides by gas–liquid chromatography. Carbohydr Res 5:340–345

    Article  CAS  Google Scholar 

  • Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, Stevenson DK, Zimmerman J, Barajas P, Cheuk R, Gadrinab C, Heller C, Jeske A, Koesema E, Meyers CC, Parker H, Prednis L, Ansari Y, Choy N, Deen H, Geralt M, Hazari N, Hom E, Karnes M, Mulholland C, Ndubaku R, Schmidt I, Guzman P, Aguilar-Henonin L, Schmid M, Weigel D, Carter DE, Marchand T, Risseeuw E, Brogden D, Zeko A, Crosby WL, Berry CC, Ecker JR (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301:653–657

    Article  PubMed  Google Scholar 

  • Bacic A, Harris PJ, Stone BA (1988) Structure and function of plant cell walls. In: Preiss J (ed) The biochemistry of plants: a comprehensive treatise, vol. 14, Carbohydrates, New York, Academic Press, pp 297–371

  • Bacic A, Moody SF, Clarke AE (1986) Structural analysis of secreted root slime from maize (Zea mays L). Plant Physiol 80:771–777

    PubMed  CAS  Google Scholar 

  • Blumenkrantz N, Asboe-Hansen G (1973) New method for quantitative-determination of uronic acid. Anal Biochem 54:484–489

    Article  PubMed  CAS  Google Scholar 

  • Borkhardt B, Skjøt M, Mikkelsen R, Jørgensen B, Ulvskov P (2005) Expression of a fungal endo-α-1,5-l-arabinanase during stolon differentiation in potato inhibits tuber formation and results in accumulation of starch and tuber-specific transcripts in the stem. Plant Sci 169:872–881

    Article  CAS  Google Scholar 

  • Bush MS, Marry M, Huxam IM, Jarvis MC, McCann MC (2001) Developmental regulation of pectic epitopes during potato tuberization. Planta 213:869–880

    Article  PubMed  CAS  Google Scholar 

  • Carpita NC, Gibeaut DM (1993) Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J 3:1–30

    Article  PubMed  CAS  Google Scholar 

  • Cosgrove DJ (2001) Wall structure and wall loosening. A look backwards and forwards. Plant Physiol 125:131–134

    Article  PubMed  CAS  Google Scholar 

  • Coutinho PM, Deleury E, Davies GJ, Henrissat H (2003) An evolving hierarchical family classification for glycosyltransferases. J Mol Biol 328:307–317

    Article  PubMed  CAS  Google Scholar 

  • Coutinho PM, Henrissat B (1999) Carbohydrate-active enzymes server at url: http://afmb.cnrs-mrs.fr/∼cazy/CAZY/index.html

  • Edgar RC (2004), MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797

    Article  PubMed  CAS  Google Scholar 

  • Egelund J, Petersen BL, Motawia S, Damager I, Faik A, Clausen H, Olsen CE, Ishii T, Ulvskov P, Geshi N (2006) Biosynthesis of pectic rhamnogalacturonan II: Molecular cloning and characterization of Golgi-localized α-xylosyltransferases encoded by the RGXT1 and RGXT2 genes of Arabidopsis thaliana. Plant Cell (in press)

  • Egelund J, Skjodt M, Geshi N, Ulvskov P, Petersen BL (2004) A complementary bioinformatic approach to identify potential plant cell wall glycosyltransferase encoding genes. Plant Physiol 136:2609–2620

    Article  PubMed  CAS  Google Scholar 

  • Gane AMJ, Craik D, Munro SLA, Howlett GJ, Clarke AE, Bacic A (1995) Structural analysis of the carbohydrate moiety of arabinogalactan-proteins fromstigmas and styles of Nicotiana alata. Carbohydr Res 277:67–85

    Article  Google Scholar 

  • Harholt J, Jensen JK, Sorensen SO, Orfila C, Pauly M, Scheller HV (2006) Arabinan deficient 1 is a putative arabinosyltransferase involved in biosynthesis of pectic arabinan in Arabidopsis. Plant Physiol 140:49–58

    Article  PubMed  CAS  Google Scholar 

  • Huisman MMH, Brull LP, Thomas-Oates JE, Haverkamp J, Schols HA, Voragen AGJ (2001) The occurrence of internal (1,5) α-linked arabinofuranose and arabinopyranose residues in arabinogalactan side chains from soybean pectic substances. Carbohydr Res 330:103–114

    Article  PubMed  CAS  Google Scholar 

  • Ishii T, Ono H, Ohnishi-Kameyama M, Maeda I (2005a) Enzymic transfer of α-l-arabinopyranosyl residues to exogenous 1,4-linked β-d-galacto-oligosaccharides using solubilized mung bean (Vigna radiate) hypocotyls microsomes and UDP-β-l-arabinopyranose. Planta 221:953–963

    Article  CAS  Google Scholar 

  • Ishii T, Konishi T, Ito Y, Ono H, Ohnishi-Kameyama M, Maeda I (2005b) A β(1–3)-arabinopyranosyltransferase that transfers a single arabinopoyranose onto arabino-oligosaccherides in mung bean (Vigna radiate) hypocotyls. Phytochem 66:2418–2425

    Article  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MV (1987) GUS fusions: β-glucuronisidase as a sensitive and versatile gene fusion maker in higher plants. EMBO J 6:3901–3907

    PubMed  CAS  Google Scholar 

  • Johnson KL, Jones BJ, Bacic A, Schultz CJ (2003) The fasciclin-like arabnogalactan proteins of Arabidopsis. A multigen family of putative cell adhesion molecules. Plant Physiol 133:1911–1925

    Article  PubMed  CAS  Google Scholar 

  • Keegstra K, Talmadge KW, Bauer WD, Albersheim P (1973) The structure of plant cell walls. III. A model of the walls of suspension-cultured sycamore cells based on the interconnections of the macromolecular components. Plant Physiol 51:188–196

    PubMed  CAS  Google Scholar 

  • Ketcham C, Wang F, Fisher SZ, Ercan A, van der Wel H, Locke RD, Sirajud-Doulah K, Matta KL, West CM (2004) Specificity of a soluble UDP-galactose:fucoside alpha 1,3-galactosyltransferase that modifies the cytoplasmic glycoprotein Skp1 in Dictyostelium. J Bio Chem 279(28):29050–29059

    Article  CAS  Google Scholar 

  • Konishi T, Ono H, Ohnishi-Kameyama M, Kaneko S, Ishii T (2006) Identification of a mung bean arabinosyltransferase that transfers arabinofuranosyl residues onto (1,5)-linked α-l-arabino-oligosaccharides. Plant Physiol 141(3):1098–1105

    Article  PubMed  CAS  Google Scholar 

  • Lamport DTA (1963) Ozygen fixation into hydroxyproline of plant cell wall proteins. J Biochem Chem 238:1438–1440

    CAS  Google Scholar 

  • Lerouxel O, Choo TS, Seveno M, Usadel B, Faye L, Lerouge P, Pauly M (2002) Rapid structural phenotyping of plant cell wall mutants by enzymatic oligosaccharide fingerprinting. Plant Physiol 130:1754–1763

    Article  PubMed  CAS  Google Scholar 

  • Mikkelsen MD, Petersen BL, Glawishnig E, Jensen AB, Andreasson E, Halkier BA (2003) Modulation of CYP79 genes and glucosinolate profiles in Arabidopsis by defense signaling pathways. Plant Physiol 131:298–308

    Article  PubMed  CAS  Google Scholar 

  • Numan KJ, Scheller HV (2003) Solubilization of an arabinan arabinosyltransferase activity from mung bean hypocotyls. Plant Physiol 132:331–342

    Article  CAS  Google Scholar 

  • O’Neill MA, Ishii T, Albersheim P, Darvil AG (2004) Rhamnogalacturonan II: Structure and function of a borate cross-linked cell wall pectic polysaccharide. Annu Rev Plant Biol 55:109–139

    Article  PubMed  CAS  Google Scholar 

  • Odonmaig P, Ebringerova A, Machová E, Alföldi J (1994) Structural and molecular properties of arabinogalactan isolated from Mongolian larchwood (Larix dahurica L.). Carbohydr Res 252:317–324

    Google Scholar 

  • Page RDM (1996) TREEVIEW: an application to display phylogenetic trees on personal computers. Computer Applications in the Biosciences 12:357–358

    PubMed  CAS  Google Scholar 

  • Pauly M, Anderson LN, Kauppinen S, Kofod LV, York WS, Albersheim P, Darvill AG, (1999) A xyloglucan specific endo-beta-1,4-glucanase from Aspergillus aculeatus: expression cloning in yeast, purification and characterization of the recombinant enzyme. Glycobiology 9:93–100

    Article  PubMed  CAS  Google Scholar 

  • Popper ZA, Fry SC (2005) Widespread occurrence of a covalent linkage between xyloglucan and acidic polysaccharides in suspension-cultured Angiosperm cells. Ann Bot 96:91–99

    Article  PubMed  CAS  Google Scholar 

  • Schultz CJ, Johanson KL, Currie G, Bacic A (2000) The classical arabinogalactan protein gene family of Arabidopsis. Plant Cell 12:1751–1767

    Article  PubMed  CAS  Google Scholar 

  • Showalter AM (1993) Structure and function of plant cell wall proteins. Plant Cell 5:9–23

    Article  PubMed  CAS  Google Scholar 

  • Sims IM, Bacic A (1995) Extracellular polysaccharides from suspension cultures of Nicotiana plumbaginifolia. Phytochemistry 38:1397–1405

    Article  CAS  Google Scholar 

  • Somerville C, Bauer S, Brinistool G, Facette M, Hamann T, Milne J, Osborne E, Paredez A, Persson S, Raab T, Vorwerk S, Youngs H (2004) Toward a systems approach to understanding plant cell walls. Science 306:2206–2211

    Article  PubMed  CAS  Google Scholar 

  • Sørensen SO, Pauly M, Bush M, Skjøt M, McCann MC, Borkhardt B, Ulvskov P (2000) Pectin engineering: modification of potato pectin by in vivo expression of an endo-1,4-beta-d-galactanase. Proc Natl Acad Sci USA 97:7639–7644

    Article  Google Scholar 

  • Talbott LD, Ray PM (1992) Molecular size and separability features of Pea cell wall polysaccharides: Implications for models of primary wall structure. Plant Physiol 98:357–368

    Article  PubMed  CAS  Google Scholar 

  • Usadel B, Schluter U, Mølhøj M, Gipmans M, Verma R, Kossmann J, Reiter WD, Pauly M (2004) Identification and characterization of a UDP-d-glucuronate-4-epimerase in Arabidopsis. FEBS Lett 596:327–331

    Article  CAS  Google Scholar 

  • Waffenschmidt S, Woessner JP, Beer K, Goodenough UW (1993) Isodityrosine cross-linking mediates insolubilization of cell walls in chlamydomonas. Plant Cell 5:809–820

    Article  PubMed  CAS  Google Scholar 

  • West CM, van der Wel H, Sassi S, Gaucher EA (2004) Cytoplasmic glycosylation of protein-hydroxyproline and its relationship to other glycosylation pathways. Biochim Biophys Acta Gen Sub 1673(1–2):29–44

    Google Scholar 

  • Willats WGT, McCartney L, Knox JP (2001) In-situ analysis of pectic polysaccharides in seed mucilage and at the root surface of Arabidopsis thaliana. Planta 213(1):37–44

    Google Scholar 

  • Willats WGT, Steele-King CG, Marcus SE, Knox JP (1999) Side chains of pectic polysaccharides are regulated in relation to cell proliferation and cell differentiation. Plant J 20:619–628

    Article  PubMed  CAS  Google Scholar 

  • Zablackis E, Huang J, Muller B, Darvill AG, Albersheim P (1995) Structure of plant-cell walls: characterization of the cell-wall polysaccharides of Arabidopsis-thaliana leaves. Plant Physiol 107:1129–1138

    Article  PubMed  CAS  Google Scholar 

  • Zykwinska AW, Ralet MCJ, Garnier CD, Thihault JFJ (2005) Evidence for in vitro binding of pectin side chains to cellulose. Plant Physiol 139:397–407

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Kirk Schnorr, Novozymes, for the gift of XEG. Ms. Vibeke Strange Petersen and Dorthe Christiansen are thanked for their skilful technical assistance. Dr. Marcia Kieliszewski is acknowledged for fruitful discussions while this manuscript was prepared. This work was supported by the Danish National Research Foundation (B.L.P., P.U., N.G.), by an EU-FP6 grant in the training network WallNet (B.L.P. and P.U.) and by The Carlsberg Foundation (J.E.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bent Larsen Petersen.

Electronic supplementary material

Below is the electronic supplementary material.

ESM 1 (PDF KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Egelund, J., Obel, N., Ulvskov, P. et al. Molecular characterization of two Arabidopsis thaliana glycosyltransferase mutants, rra1 and rra2, which have a reduced residual arabinose content in a polymer tightly associated with the cellulosic wall residue. Plant Mol Biol 64, 439–451 (2007). https://doi.org/10.1007/s11103-007-9162-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-007-9162-y

Keywords

Navigation