Skip to main content

Advertisement

Log in

PPARα Is Regulated by miR-21 and miR-27b in Human Liver

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

Peroxisome proliferator-activated receptor α (PPARα) is an important transcriptional factor that regulates genes encoding endo/xenobiotic enzymes and lipid metabolizing enzymes. In this study, we investigated whether microRNAs (miRNAs) are involved in the regulation of PPARα in human liver.

Methods

Precursor or antisense oligonucleotide for miR-21 or miR-27b was transfected into HuH7 cells; expression of PPARα and acyl-CoA synthetase M2B was determined by Western blot and real-time RT-PCR. Luciferase assay was performed to identify the functional miRNA recognition element (MRE). Expression levels of PPARα, miR-21, and miR-27b in a panel of 24 human livers were determined.

Results

The overexpression and inhibition of miR-21 or miR-27b in HuH7 cells significantly decreased and increased the PPARα protein level, respectively, but not PPARα mRNA level. The miRNA-dependent regulation of PPARα affected the expression of its downstream gene. Luciferase assay identified a functional MRE for miR-21 in the 3′-untranslated region of PPARα. In human livers, the PPARα protein levels were not correlated with PPARα mRNA, but inversely correlated with the miR-21 levels, suggesting a substantial impact of miR-21, although the contribution of miR-27b could not be ruled out.

Conclusions

We found that PPARα in human liver is regulated by miRNAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ACS:

acyl-CoA synthetase

AsO:

antisense LNA/DNA oligonucleotide

DMEM:

Dulbecco’s modified Eagle’s medium

FBS:

fetal bovine serum

IL-6:

interleukin-6

LNA:

locked nucleic acid

miRNA:

microRNA

MRE:

miRNA recognition element

PPAR:

peroxisome proliferator-activated receptor

RXR:

retinoid X receptor

Stat3:

signal transducer and activator of transcription 3

REFERENCES

  1. Shah YM, Morimura K, Yang Q, Tanabe T, Takagi M, Gonzalez FJ. Peroxisome proliferator-activated receptor α regulates a microRNA-mediated signaling cascade responsible for hepatocellular proliferation. Mol Cell Biol. 2007;27(12):4238–47.

    Article  PubMed  CAS  Google Scholar 

  2. Kersten S, Desvergne B, Wahli W. Roles of PPARs in health and disease. Nature. 2000;405(6785):421–4.

    Article  PubMed  CAS  Google Scholar 

  3. van Raalte DH, Li M, Pritchard PH, Wasan KM. Peroxisome proliferator-activated receptor (PPAR)-α: a pharmacological target with a promising future. Pharm Res. 2004;21(9):1531–8.

    Article  PubMed  Google Scholar 

  4. Martin G, Schoonjans K, Lefebvre AM, Staels B, Auwerx J. Coordinate regulation of the expression of the fatty acid transport protein and acyl-CoA synthetase genes by PPARα and PPARγ activators. J Biol Chem. 1997;272(45):28210–7.

    Article  PubMed  CAS  Google Scholar 

  5. Raucy JL, Lasker J, Ozaki K, Zoleta V. Regulation of CYP2E1 by ethanol and palmitic acid and CYP4A11 by clofibrate in primary cultures of human hepatocytes. Toxicol Sci. 2004;79(2):233–41.

    Article  PubMed  CAS  Google Scholar 

  6. Barbier O, Villeneuve L, Bocher V, Fontaine C, Pineda-Torra I, Duhem C, et al. The UDP-glucuronosyltransferase 1A9 enzyme is a peroxisome proliferator-activated receptor α and γ target gene. J Biol Chem. 2003;278(16):13975–83.

    Article  PubMed  CAS  Google Scholar 

  7. Barbier O, Duran-Sandoval D, Pineda-Torra I, Kosykh V, Fruchart JC, Staels B. Peroxisome proliferator-activated receptor α induces hepatic expression of the human bile acid glucuronidating UDP-glucuronosyltransferase 2B4 enzyme. J Biol Chem. 2003;278(35):32852–60.

    Article  PubMed  CAS  Google Scholar 

  8. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.

    Article  PubMed  CAS  Google Scholar 

  9. Ambros V. The functions of animal microRNAs. Nature. 2004;431(7006):350–5.

    Article  PubMed  CAS  Google Scholar 

  10. Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA. 2004;101(9):2999–3004.

    Article  PubMed  CAS  Google Scholar 

  11. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, et al. MicroRNA expression profiles classify human cancers. Nature. 2005;435(7043):834–8.

    Article  PubMed  CAS  Google Scholar 

  12. Friedman RC, Farh KK, Burge CB, Bartel DP. Most mammalian miRNAs are conserved targets of microRNAs. Genome Res. 2009;19(1):92–105.

    Article  PubMed  CAS  Google Scholar 

  13. Takagi S, Nakajima M, Mohri T, Yokoi T. Post-transcriptional regulation of human pregnane X receptor by microRNA affects the expression of cytochrome P450 3A4. J Biol Chem. 2008;283(15):9674–80.

    Article  PubMed  CAS  Google Scholar 

  14. Mohri T, Nakajima M, Takagi S, Komagata S, Yokoi T. MicroRNA regulates human vitamin D receptor. Int J Cancer. 2009;125(6):1328–33.

    Article  PubMed  CAS  Google Scholar 

  15. Takagi S, Nakajima M, Kida K, Yamaura Y, Fukami T, Yokoi T. MicroRNAs regulate human hepatocyte nuclear factor 4α, modulating the expression of metabolic enzymes and cell cycle. J Biol Chem. 2010;285(7):4415–22.

    Article  PubMed  CAS  Google Scholar 

  16. Jennewein C, Knethen AV, Schmid T, Brune B. MicroRNA-27b contributes to lipopolysaccharide-mediated peroxisome proliferator-activated receptor γ (PPARγ) mRNA destabilization. J Biol Chem. 2010;285(16):11846–53.

    Article  PubMed  CAS  Google Scholar 

  17. Vreugdenhil E, Verissimo CS, Mariman R, Kamporst JT, Barbosa JS, Zweers T, et al. MicroRNA 18 and 124a down-regulate the glucocorticoid receptor: implications for glucocorticoid responsiveness in the brain. Endocrinology. 2009;150(5):2220–8.

    Article  PubMed  CAS  Google Scholar 

  18. Al-Nakhle H, Burns PA, Cummings M, Hanby AM, Hughes TA, Satheesha S, et al. Estrogen receptor β1 expression is regulated by miR-92 in breast cancer. Cancer Res. 2010;70(11):4778–84.

    Article  PubMed  CAS  Google Scholar 

  19. Tsuchiya Y, Nakajima M, Kyo S, Kanaya T, Inoue M, Yokoi T. Human CYP1B1 is regulated by estradiol via estrogen receptor. Cancer Res. 2004;64(9):3119–25.

    Article  PubMed  CAS  Google Scholar 

  20. Yaacob NS, Norazmi MN, Gibson GG, Kass GE. The transcription of the Peroxisome proliferator-activated receptor α is regulated by protein kinase C. Toxicol Lett. 2001;125(1–3):133–41.

    Article  PubMed  CAS  Google Scholar 

  21. Barger PM, Browning AC, Garner AN, Kelly DP. p38 mitogen-activated protein kinase activates peroxisome proliferator-activated receptor α. J Biol Chem. 2001;276(48):44495–501.

    Article  PubMed  CAS  Google Scholar 

  22. Lemberger T, Saladin R, Vazquez M, Assimacopoulos F, Staels B, Desvergne B, et al. Expression of the peroxisome proliferator-activated receptor α gene is stimulated by stress and follows a diurnal rhythm. J Biol Chem. 1996;271(3):1764–9.

    Article  PubMed  CAS  Google Scholar 

  23. Blanquart C, Mansouri R, Paumelle R, Fruchart JC, Staels B, Glineur C. The protein kinase C signaling pathway regulates a molecular switch between transactivation and transrepression activity of the peroxisome proliferator-activated receptor α. Mol Endocrinol. 2004;18(8):1906–18.

    Article  PubMed  CAS  Google Scholar 

  24. Juge-Aubry CE, Hammar E, Siegrist-Kaiser C, Pernin A, Takeshita A, Chin WW, et al. Regulation of the transcriptional activity of the peroxisome proliferator-activated receptor α by phosphorylation of a ligand-independent trans-activating domein. J Biol Chem. 1999;274(15):10505–10.

    Article  PubMed  CAS  Google Scholar 

  25. Iliopoulos D, Malizos KN, Oikonomou P, Tsezou A. Integrative microRNA and proteomic approaches identify novel osteoarthritis genes and their collaborative metabolic and inflammatory networks. PLoS ONE. 2008;3(11):e3740.

    Article  PubMed  Google Scholar 

  26. Zheng L, Lv GC, Sheng J, Yang YD. Effect of miRNA-10b in regulating cellular steatosis level by targeting PPAR-α expression, a novel mechanism for the pathogenesis of NAFLD. J Gastroenterol Hepatol. 2010;25(1):156–63.

    Article  PubMed  CAS  Google Scholar 

  27. Barad O, Meiri E, Avniel A, Aharonov R, Barzilai A, Bentwich I, et al. MicroRNA expression detected by oligonucleotide microarrays: system establishment and expression profiling in human tissues. Genome Res. 2004;14(12):2486–94.

    Article  PubMed  CAS  Google Scholar 

  28. Loffler D, Brocke-Heidrich K, Pfeifer G, Stocsits C, Hackermuller J, Kretzschmar AK, et al. Interleukin-6-dependent survival of multiple myeloma cells involves the Stat3-mediated induction of microRNA-21 through a highly conserved enhancer. Blood. 2007;110(4):1330–3.

    Article  PubMed  Google Scholar 

  29. Wegenka UM, Buschmann J, Lutticken C, Heinrich PC, Horn F. Acute-phase response factor, a nuclear factor binding to acute-phase response elements, is rapidly activated by interleukin-6 at the posttranslational level. Mol Cell Biol. 1993;13(1):276–88.

    PubMed  CAS  Google Scholar 

  30. Gervois P, Vu-Dac N, Kleemann R, Kockx M, Dubois G, Laine B, et al. Negative regulation of human fibrinogen gene expression by peroxisome proliferator-activated receptor α agonists via inhibition of CCAAT box/enhancer-binding protein β. J Biol Chem. 2001;276(36):33471–7.

    Article  PubMed  CAS  Google Scholar 

  31. Lin Q, Gao Z, Alarcon RM, Ye J, Yun Z. A role of miR-27 in the regulation of adipogenesis. FEBS J. 2009;276(8):2348–58.

    Article  PubMed  CAS  Google Scholar 

  32. Ji J, Zhang J, Huang G, Qian J, Wang X, Mei S. Over-expressed microRNA-27a and 27b influence fat accumulation and cell proliferation during rat hepatic stellate cell activation. FEBS Lett. 2009;583(4):759–66.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported in part by Grant-in-Aid for Scientific Research (B) from Japan Society for the Promotion of Science. We acknowledge Mr. Brent Bell for reviewing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsuyoshi Yokoi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kida, K., Nakajima, M., Mohri, T. et al. PPARα Is Regulated by miR-21 and miR-27b in Human Liver. Pharm Res 28, 2467–2476 (2011). https://doi.org/10.1007/s11095-011-0473-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-011-0473-y

KEY WORDS

Navigation