Skip to main content
Log in

Sequentially optimal sensor placement in thermoelastic models for real time applications

  • Published:
Optimization and Engineering Aims and scope Submit manuscript

Abstract

Optimal sensor placement problems are considered for a thermoelastic solid body. The main motivation is the real-time capable prediction of the displacement of the tool center point (TCP) in a machine tool by temperature measurements. A reduced order model based on proper orthogonal decomposition is used to describe the temperature field. The quality of the TCP displacement estimation is measured in terms of the associated covariance matrix. Based on this criterion, a sequential placement algorithm is described which stops when a certain prediction quality is reached. Numerical tests are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. \(L^2(\varOmega )\) is the Lebesgue space of square integrable functions, and \(H^1(\varOmega )^3\) stands for the Sobolev space of vector valued square integrable functions whose weak first-order derivatives are also square integrable.

  2. To be precise, (2.19) is valid only for \(i \ge n_{{\text {POD}}}\ge 3\), i.e., one needs at least as many sensors as one has output quantities.

References

  • Alonso Antonio A, Frouzakis Christos E, Kevrikidis Ioannis G (2004a) Optimal sensor placement for state reconstruction of distributed process systems. AIChE J 50(7):1438–1452. doi:10.1002/aic.10121

    Article  Google Scholar 

  • Alonso Antonio A, Kevrekidis Ioannis G, Banga Julio R, Frouzakis Christos E (2004b) Optimal sensor location and reduced order observer design for distributed process systems. Comput Chem Eng 28(1–2):27–35. doi:10.1016/S0098-1354(03)00175-3 ISSN 0098–1354

    Article  Google Scholar 

  • Antoulas Athanasios C (2005) Approximation of large-scale dynamical systems, volume 6 of advances in design and control. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, ISBN 0-89871-529-6. doi:10.1137/1.9780898718713. With a foreword by Jan C. Willems

  • Antonios Armaou, Demetriou Michael A (2006) Optimal actuator/sensor placement for linear parabolic PDEs using spatial norm. Chem Eng Sci 61(22):7351–7367. doi:10.1016/j.ces.2006.07.027 ISSN 0009–2509

    Article  Google Scholar 

  • Atkinson AC, Donev AN, Tobias RD (2007) Optimum experimental designs, with SAS, volume 34 of Oxford statistical science series. Oxford University Press, Oxford ISBN 978-0-19-929660-6

    Google Scholar 

  • Atwell JA, King BB (2001) Proper orthogonal decomposition for reduced basis feedback controllers for parabolic equations. Math Comput Model 33(1–3):1–19. doi:10.1016/S0895-7177(00)00225-9 ISSN 0895–7177, Computation and control, VI (Bozeman, MT

    Article  MATH  MathSciNet  Google Scholar 

  • Bauer I, Bock HG, Körkel S, Schlöder JP (2000) Numerical methods for optimum experimental design in DAE control problems. J Comput Appl Math 120(1–2):1–25

    Article  MATH  MathSciNet  Google Scholar 

  • Berkooz G, Holmes P, Lumley JL (1993) The proper orthogonal decomposition in the analysis of turbulent flows. In: Annual review of fluid mechanics, vol 25. Annual Reviews, Palo Alto, CA, pp 539–575

  • Boley Bruno A, Weiner Jerome H (1960) Theory of thermal stresses. Wiley, New York London

    MATH  Google Scholar 

  • Kelly Cohen, Stefan Siegel, Thomas McLaughlin (2006) A heuristic approach to effective sensor placement for modeling of a cylinder wake. Comput Fluids 35(1):103–120. doi:10.1016/j.compfluid.2004.11.002 ISSN 0045–7930

    Article  MATH  Google Scholar 

  • Reza Eslami M., Hetnarski Richard B., Ignaczak Józef, Noda N, Sumi N, Tanigawa Y (2013) Theory of elasticity and thermal stresses, volume 197 of solid mechanics and its applications. Springer, Dordrecht, ISBN 978-94-007-6355-5; 978-94-007-6356-2. doi:10.1007/978-94-007-6356-2. Explanations, problems and solutions

  • Fahl M, Sachs E (2003) Reduced order modelling approaches to PDE-constrained optimization based on proper orthogonal decomposition. In: Large-scale PDE-constrained optimization, volume 30, pp. 268–280. Springer, New York, doi:10.1007/978-3-642-55508-4_16

  • Fedorov VV, Hackl P (1997) Model-oriented design of experiments, vol 125., Lecture Notes in Statistics. Springer-Verlag, New York. ISBN 0-387-98215-9. doi:10.1007/978-1-4612-0703-0

  • FEniCS. (2011) FEniCS project. http://www.fenicsproject.org/

  • García Míriam R, Vilas Carlos, Banga Julio R, Alonso Antonio A (2007) Optimal field reconstruction of distributed process systems from partial measurements. Ind Eng Chem Res 46(2):530–539. doi:10.1021/ie0604167

    Article  Google Scholar 

  • Green K (2006) Optimal sensor placement for parameter identification. Master thesis, Rice University, Houston

  • Kammer DC (1991) Sensor placement for on-orbit modal identification and correlation of large space structures. J Guid Control Dyn 14(2):251–259. doi:10.2514/3.20635

    Article  Google Scholar 

  • Koevoets AH, Eggink HJ, Van der Sanden J, Dekkers J, Ruijl TAM (2007) Optimal sensor configuring techniques for the compensation of thermo-elastic deformations in high-precision systems. In: Thermal Investigation of ICs and Systems, 2007. THERMINIC 2007. 13th International Workshop on, pp. 208–213, doi:10.1109/THERMINIC.2007.4451779

  • Körkel S (2002) Numerische Methoden für Optimale Versuchsplanungsprobleme bei nichtlinearen DAE-Modellen. PhD thesis, Ruprecht-Karls-Universität Heidelberg

  • Körkel S, Arellano-Garcia H, Schöneberger J, Wozny G (2008) Optimum experimental design for key performance indicators. In: Proceedings of 18th European symposium on computer aided process engineering, volume 25, pp. 575–580

  • Kunisch K, Volkwein S (2001) Galerkin proper orthogonal decomposition methods for parabolic problems. Numer Math 90(1):117–148. doi:10.1007/s002110100282 ISSN 0029–599X

    Article  MATH  MathSciNet  Google Scholar 

  • Logg Anders, Mardal Kent-Andre, Wells Garth N, et al. (2012) Automated solution of differential equations by the finite element method. Springer, ISBN 978-3-642-23098-1. doi:10.1007/978-3-642-23099-8

  • Meo M, Zumpano G (2005) On the optimal sensor placement techniques for a bridge structure. Eng Struct 27(10):1488–1497. doi:10.1016/j.engstruct.2005.03.015 ISSN 0141–0296

    Article  Google Scholar 

  • Mokhasi P, Rempfer D (2004) Optimized sensor placement for urban flow measurement. Phys Fluids 16(5):1758–1764. doi:10.1063/1.1689351

    Article  Google Scholar 

  • Papadimitriou C (2004) Optimal sensor placement methodology for parametric identification of structural systems. J Sound Vib 278(4–5):923–947. doi:10.1016/j.jsv.2003.10.063 ISSN 0022–460X

    Article  MATH  MathSciNet  Google Scholar 

  • Seber GAF, Wild CJ (2005) Nonlinear regression. Wiley series in probability and statistics. Wiley, ISBN 9780471725305. URL http://books.google.de/books?id=piM-RsGvZHsC

  • Uciński D (2005) Optimal measurement methods for distributed parameter system identification. Systems and Control Series. CRC Press, Boca Raton

  • Uciński D (2000) Optimal sensor location for parameter estimation of distributed processes. Int J Control 73(13):1235–1248. doi:10.1080/002071700417876 ISSN 0020–7179

  • Uciński D, Patan M (2007) D-optimal design of a monitoring network for parameter estimation of distributed systems. Journal of Glob Optim 39(2):291–322. doi:10.1007/s10898-007-9139-z ISSN 0925–5001

  • Willcox K (2006) Unsteady flow sensing and estimation via the gappy proper orthogonal decomposition. Comput Fluids 35(2):208–226. doi:10.1016/j.compfluid.2004.11.006 ISSN 0045–7930

    Article  MATH  Google Scholar 

  • Ting-Hua Yi, Li Hong-Nan Gu, Gu Ming (2011) Optimal sensor placement for structural health monitoring based on multiple optimization strategies. Struct Des Tall Spec Build 20(7):881–900. doi:10.1002/tal.712 ISSN 1541–7808

    Article  Google Scholar 

  • Yildirim B, Chryssostomidis C, Karniadakis GE (2009) Efficient sensor placement for ocean measurements using low-dimensional concepts. Ocean Modell 27(3–4):160–173. doi:10.1016/j.ocemod.2009.01.001 ISSN 1463–5003

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a DFG grant within the http://transregio96.deSpecial Research Program SFB/ Transregio 96 (Thermo-energetische Gestaltung von Werkzeugmaschinen), which is gratefully acknowledged.

The authors wish to thank Dipl.-Ing. Carsten Zwingenberger (Fraunhofer Institute for Machine Tools and Forming Technology, Chemnitz) for providing the CAD geometry and mesh of the machine column.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilka Riedel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herzog, R., Riedel, I. Sequentially optimal sensor placement in thermoelastic models for real time applications. Optim Eng 16, 737–766 (2015). https://doi.org/10.1007/s11081-015-9275-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11081-015-9275-0

Keywords

Navigation