Skip to main content

Advertisement

Log in

A molecular insight of inflammatory cascades in rheumatoid arthritis and anti-arthritic potential of phytoconstituents

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Rheumatoid arthritis (RA) is an auto-immune inflammatory disorder of the synovial lining of joints marked by immune cells infiltration and hyperplasia of synovial fibroblasts which results in articular cartilage destruction and bone erosion. The current review will provide comprehensive information and results obtained from the recent research on the phytochemicals which were found to have potential anti-arthritic activity along with the molecular pathway that were targeted to control RA progression. In this review, we have summarized the scientific data from various animal studies about molecular mechanisms, possible side effects, associations with conventional therapies, and the role of complementary and alternative medicines (CAM) for RA such as ayurvedic medicines in arthritis. In the case of RA, phytochemicals have been shown to act through different pathways such as regulation of inflammatory signaling pathways, T cell differentiation, inhibition of angiogenic factors, induction of the apoptosis of fibroblast-like synoviocytes (FLS), inhibition of autophagic pathway by inhibiting High-mobility group box 1 protein (HMGB-1), Akt/ mTOR pathway and HIF-1α mediated Vascular endothelial growth (VEGF) expression. Also, osteoclasts differentiation is inhibited by down-regulating the VEGF expression by decreasing the accumulation of the ARNT (Aryl Hydrocarbon Receptor Nuclear Translocator)-HIF-1α complex Although phytochemicals have shown to exert potential anti-arthritic activity in many animal models and further clinical data is needed to confirm their safety, efficacy, and interactions in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

bFGF:

Basic fibroblast growth factor

CAM:

Complementary and alternative medicine

CXCR4:

CXC chemokine receptor 4

DNMT:

DNA methyltransferase

ERK:

Extracellular-signal-regulated kinase

FLS:

Fibroblast-like synoviocytes

FOXP3:

Forkhead box P3

GSK3B:

Glycogen synthase kinase 3B

HMGB-1:

High-mobility group box 1 protein

MALAT1:

Metastasis associated lung adenocarcinoma transcript 1

MAPK:

Mitogen activated protein kinase

MHC:

Major histocompatibility complex

OPG:

Osteoprotegerin

RAGE:

Receptor for advanced glycation end products

RANKL:

Receptor activator of nuclear factor-κB ligand

ROR:

Retinoic orphan receptor

STAT3:

Signal transducer and activator of transcription 3

UAA:

Ursolic acid-3-acetate

VEGF:

Vascular endothelial growth factor

References

  1. Nathan C (2002) Points of control in inflammation. Nature 420:846–852

    Article  CAS  PubMed  Google Scholar 

  2. Mohammed FF, Smookler DS, Khokha R (2003) Metalloproteinases, inflammation, and rheumatoid arthritis. Ann Rheum Dis 62:ii43–ii47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Medzhitov R (2008) Origin and physiological roles of inflammation. Nature 454:428–435. https://doi.org/10.1038/nature07201

    Article  CAS  PubMed  Google Scholar 

  4. Lim H, Kim HP (2007) Inhibition of mammalian collagenase, matrix metalloproteinase-1, by naturally-occurring flavonoids. Planta Med 73:1267–1274

    Article  CAS  PubMed  Google Scholar 

  5. Dudics S, Langan D, Meka RR et al (2018) Natural products for the treatment of autoimmune arthritis: their mechanisms of action, targeted delivery, and interplay with the host microbiome. Int J Mol Sci. https://doi.org/10.3390/ijms19092508

    Article  PubMed  PubMed Central  Google Scholar 

  6. Firestein GS (2003) Evolving concepts of rheumatoid arthritis. Nature 423:356–361

    Article  CAS  PubMed  Google Scholar 

  7. Silman AJ, Pearson JE (2002) Epidemiology and genetics of rheumatoid arthritis. Arthritis Res 4:S265–S272. https://doi.org/10.1186/ar578

    Article  PubMed  PubMed Central  Google Scholar 

  8. Helmick CG, Felson DT, Lawrence RC et al (2008) Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part I Arthritis Rheum 58:15–25. https://doi.org/10.1002/art.23177

    Article  PubMed  Google Scholar 

  9. Chopra A (2000) Ayurvedic medicine and arthritis. Rheum Dis Clin N Am 26:133–144

    Article  CAS  Google Scholar 

  10. Press D (2015) Toward the integration and advancement of herbal medicine : a focus on traditional Indian medicine. Bot: Targets Therapy 5:33–44

    Google Scholar 

  11. Chopra A, Doiphode VV (2002) Ayurvedic medicine: core concept, therapeutic principles, and current relevance. Med Clin 86:75–89

    Google Scholar 

  12. McInnes IB, Schett G (2007) Cytokines in the pathogenesis of rheumatoid arthritis. Nat Rev Immunol 7:429–442. https://doi.org/10.1038/nri2094

    Article  CAS  PubMed  Google Scholar 

  13. McInnes IB, Schett G (2011) The pathogenesis of rheumatoid arthritis. N Engl J Med 365:2205–2219

    Article  CAS  PubMed  Google Scholar 

  14. Rantapää-Dahlqvist S, De Jong BAW, Berglin E et al (2003) Antibodies against cyclic citrullinated peptide and IgA rheumatoid factor predict the development of rheumatoid arthritis. Arthritis Rheum 48:2741–2749

    Article  PubMed  Google Scholar 

  15. Schröder AE, Greiner A, Seyfert C, Berek C (1996) Differentiation of B cells in the nonlymphoid tissue of the synovial membrane of patients with rheumatoid arthritis. Proc Natl Acad Sci 93:221–225

    Article  PubMed  PubMed Central  Google Scholar 

  16. Nadkarni S, Mauri C, Ehrenstein MR (2007) Anti-TNF-α therapy induces a distinct regulatory T cell population in patients with rheumatoid arthritis via TGF-β. J Exp Med 204:33–39. https://doi.org/10.1084/jem.20061531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tolboom TCA, Van Der Helm-Van Mil AHM, Nelissen RGHH et al (2005) Invasiveness of fibroblast-like synoviocytes is an individual patient characteristic associated with the rate of joint destruction in patients with rheumatoid arthritis. Arthritis Rheum 52:1999–2002. https://doi.org/10.1002/art.21118

    Article  PubMed  Google Scholar 

  18. Lee S-Y, Kwok S-K, Son H-J et al (2013) IL-17-mediated Bcl-2 expression regulates survival of fibroblast-like synoviocytes in rheumatoid arthritis through STAT3 activation. Arthritis Res Ther 15:1–10

    Article  CAS  Google Scholar 

  19. Ziolkowska M, Kurowska M, Radzikowska A et al (2002) High levels of osteoprotegerin and soluble receptor activator of nuclear factor κB ligand in serum of rheumatoid arthritis patients and their normalization after anti-tumor necrosis factor α treatment. Arthritis Rheum 46:1744–1753. https://doi.org/10.1002/art.10388

    Article  CAS  PubMed  Google Scholar 

  20. Shigeyama Y, Pap T, Kunzler P et al (2000) Expression of osteoclast differentiation factor in rheumatoid arthritis. Arthritis Rheum Off J Am Coll Rheumatol 43:2523–2530

    Article  CAS  Google Scholar 

  21. Edwards SW, Hallett MB (1997) Seeing the wood for the trees: the forgotten role of neutrophils in rheumatoid arthritis. Immunol Today 18:320–324

    Article  CAS  PubMed  Google Scholar 

  22. Veale DJ, Fearon U (2006) Inhibition of angiogenic pathways in rheumatoid arthritis: potential for therapeutic targeting. Best Pract Res Clin Rheumatol 20:941–947

    Article  CAS  PubMed  Google Scholar 

  23. Guo H, Callaway JB, Ting JPY (2015) Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat Med 21:677–687

    Article  PubMed  PubMed Central  Google Scholar 

  24. Sharma D, Kanneganti T-D (2016) The cell biology of inflammasomes: Mechanisms of inflammasome activation and regulation. J Cell Biol 213:617–629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mangan MSJ, Olhava EJ, Roush WR et al (2018) Targeting the NLRP3 inflammasome in inflammatory diseases. Nat Rev Drug Discov 17:588–606

    Article  CAS  PubMed  Google Scholar 

  26. Shin MS, Kang Y, Wahl ER et al (2019) Macrophage migration inhibitory factor regulates U1 small nuclear RNP immune complex–mediated activation of the NLRP3 inflammasome. Arthritis Rheumatol 71:109–120

    Article  CAS  PubMed  Google Scholar 

  27. Lang T, Lee JPW, Elgass K et al (2018) Macrophage migration inhibitory factor is required for NLRP3 inflammasome activation. Nat Commun 9:1–15

    Article  Google Scholar 

  28. Dinarello CA (2006) Interleukin 1 and interleukin 18 as mediators of inflammation and the aging process. Am J Clin Nutr 83:447S-455S

    Article  CAS  PubMed  Google Scholar 

  29. Lee W-W, Kang SW, Choi J et al (2010) Regulating human Th17 cells via differential expression of IL-1 receptor. Blood J Am Soc Hematol 115:530–540

    CAS  Google Scholar 

  30. Martinon F, Pétrilli V, Mayor A et al (2006) Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440:237–241

    Article  CAS  PubMed  Google Scholar 

  31. Kolly L, Busso N, Palmer G et al (2010) Expression and function of the NALP3 inflammasome in rheumatoid synovium. Immunology 129:178–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kahlenberg MM, Kang I (2020) The clinicopathologic significance of inflammasome activation in autoimmune diseases: inflammasome and autoimmune diseases. Arthritis Rheumatol 72:386. https://doi.org/10.1002/art.41127

    Article  PubMed  PubMed Central  Google Scholar 

  33. Li Y, Shen Y, Jin K et al (2019) The DNA repair nuclease MRE11A functions as a mitochondrial protector and prevents T cell pyroptosis and tissue inflammation. Cell Metab 30:477–492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhao C, Gu Y, Zeng X, Wang J (2018) NLRP3 inflammasome regulates Th17 differentiation in rheumatoid arthritis. Clin Immunol 197:154–160

    Article  CAS  PubMed  Google Scholar 

  35. Cronstein BN, Sitkovsky M (2016) Adenosine and adenosine receptors in the pathogenesis and treatment of rheumatic diseases. Nat Publ Gr. https://doi.org/10.1038/nrrheum.2016.178

    Article  Google Scholar 

  36. Crofford LJ (2013) Use of NSAIDs in treating patients with arthritis. Arthritis Res Ther 15:S2

    Article  PubMed  PubMed Central  Google Scholar 

  37. Schett G, Emery P, Tanaka Y et al (2016) Tapering biologic and conventional DMARD therapy in rheumatoid arthritis: current evidence and future directions. Ann Rheum Dis 75:1428–1437. https://doi.org/10.1136/annrheumdis-2016-209201

    Article  CAS  PubMed  Google Scholar 

  38. Gerards AH, de Lathouder S, de Groot ER et al (2003) Inhibition of cytokine production by methotrexate. Studies in healthy volunteers and patients with rheumatoid arthritis. Rheumatology 42:1189–1196. https://doi.org/10.1093/rheumatology/keg323

    Article  CAS  PubMed  Google Scholar 

  39. Brown PM, Pratt AG, Isaacs JD (2016) Mechanism of action of methotrexate in rheumatoid arthritis, and the search for biomarkers. Nat Rev Rheumatol 12:731–742. https://doi.org/10.1038/nrrheum.2016.175

    Article  CAS  PubMed  Google Scholar 

  40. Kerschbaumer A, Sepriano A, Smolen JS et al (2020) Efficacy of pharmacological treatment in rheumatoid arthritis: a systematic literature research informing the 2019 update of the EULAR recommendations for management of rheumatoid arthritis. Ann Rheum Dis 79:S744–S759. https://doi.org/10.1136/annrheumdis-2019-216656

    Article  CAS  Google Scholar 

  41. Goh L, Jewell T, Laversuch C, Samanta A (2013) A systematic review of the influence of anti-TNF on infection rates in patients with rheumatoid arthritis. Rev Bras Reumatol 53:501–515. https://doi.org/10.1016/j.rbre.2012.12.001

    Article  PubMed  Google Scholar 

  42. Bijlsma JWJ, Jacobs JWG (2008) Glucocorticoid chronotherapy in rheumatoid arthritis. Lancet 371:183

    Article  PubMed  Google Scholar 

  43. Mundell L, Lindemann R, Douglas J (2017) Monitoring long-term oral corticosteroids. BMJ Open Qual 6:e000209. https://doi.org/10.1136/bmjoq-2017-000209

    Article  PubMed  PubMed Central  Google Scholar 

  44. Baschant U, Lane NE, Tuckermann J (2012) The multiple facets of glucocorticoid action in rheumatoid arthritis. Nat Rev Rheumatol 8:645–655. https://doi.org/10.1038/nrrheum.2012.166

    Article  CAS  PubMed  Google Scholar 

  45. Newman DJ, Cragg GM (2016) Natural products as sources of new drugs from 1981 to 2014. J Nat Prod 79:629–661

    Article  CAS  PubMed  Google Scholar 

  46. Manohar R (2013) Rheumatoid arthritis: ayurvedic perspectives. ASL Musculoskelet Dis 1:1. https://doi.org/10.4103/0000-1112.111926

    Article  Google Scholar 

  47. Jaiswal YS, Williams LL (2016) Journal of traditional and complementary medicine review article a glimpse of ayurveda e the forgotten history and principles of Indian traditional medicine. J Tradit Chin Med Sci. https://doi.org/10.1016/j.jtcme.2016.02.002

    Article  Google Scholar 

  48. Patwardhan B, Warude D, Pushpangadan P, Bhatt N (2005) Ayurveda and traditional Chinese medicine: a comparative overview. Evid Based Complement Altern Med 2:465–473. https://doi.org/10.1093/ecam/neh140

    Article  Google Scholar 

  49. Balkrishna A, Sakat SS, Joshi K et al (2019) Anti-inflammatory and anti-arthritic efficacies of an Indian traditional herbo-mineral medicine “Divya Amvatari Ras” in collagen antibody-induced arthritis (CAIA) mouse model through modulation of IL-6/IL-1β/TNF-α/NFκB signaling. Front Pharmacol 10:1–19. https://doi.org/10.3389/fphar.2019.00659

    Article  CAS  Google Scholar 

  50. Panche AN, Diwan AD, Chandra SR (2016) Flavonoids: an overview. J Nutr Sci 5:e47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hughes SD, Ketheesan N, Haleagrahara N (2017) The therapeutic potential of plant flavonoids on rheumatoid arthritis. Crit Rev Food Sci Nutr 57:3601–3613

    Article  CAS  PubMed  Google Scholar 

  52. Kelepouri D, Mavropoulos A, Bogdanos DP, Sakkas LI (2018) The role of flavonoids in inhibiting Th17 responses in inflammatory arthritis. J Immunol Res. https://doi.org/10.1155/2018/9324357

    Article  PubMed  PubMed Central  Google Scholar 

  53. Wang Y, ling, Gao J mei, Xing LZ, (2016) Therapeutic potential of Oroxylin A in rheumatoid arthritis. Int Immunopharmacol 40:294–299. https://doi.org/10.1016/j.intimp.2016.09.006

    Article  CAS  PubMed  Google Scholar 

  54. Nakamura K, Matsuoka H, Nakashima S et al (2015) Oral administration of apple condensed tannins delays rheumatoid arthritis development in mice via downregulation of T helper 17 (Th17) cell responses. Mol Nutr Food Res 59:1406–1410

    Article  CAS  PubMed  Google Scholar 

  55. Carullo G, Cappello AR, Frattaruolo L et al (2017) Quercetin and derivatives: useful tools in inflammation and pain management. Future Med Chem 9:79–93

    Article  CAS  PubMed  Google Scholar 

  56. Hybertson BM, Gao B, Bose SK, McCord JM (2011) Oxidative stress in health and disease: the therapeutic potential of Nrf2 activation. Mol Asp Med 32:234–246

    Article  CAS  Google Scholar 

  57. Guazelli CFS, Staurengo-Ferrari L, Zarpelon AC et al (2018) Quercetin attenuates zymosan-induced arthritis in mice. Biomed Pharmacother 102:175–184. https://doi.org/10.1016/j.biopha.2018.03.057

    Article  CAS  PubMed  Google Scholar 

  58. Pope RM (2002) Apoptosis as a therapeutic tool in rheumatoid arthritis. Nat Rev Immunol 2:527–535

    Article  CAS  PubMed  Google Scholar 

  59. Wang G, Wu Y, Zhu Y (2018) Mechanism of MALAT1 preventing apoptosis of vascular endothelial cells induced by oxygen-glucose deficiency and reoxidation. Artif Cells Nanomed Biotechnol 46:798–805. https://doi.org/10.1080/21691401.2018.1436065

    Article  CAS  PubMed  Google Scholar 

  60. Pan F, Zhu L, Lv H, Pei C (2016) Quercetin promotes the apoptosis of fibroblast-like synoviocytes in rheumatoid arthritis by upregulating lncRNA MALAT1. Int J Mol Med 38:1507–1514. https://doi.org/10.3892/ijmm.2016.2755

    Article  CAS  PubMed  Google Scholar 

  61. Yuan K, Zhu Q, Lu Q et al (2020) Quercetin alleviates rheumatoid arthritis by inhibiting neutrophil inflammatory activities. J Nutr Biochem 84:108454. https://doi.org/10.1016/j.jnutbio.2020.108454

    Article  CAS  PubMed  Google Scholar 

  62. Ali F, Naz F, Jyoti S et al (2017) Health functionality of apigenin: a review Health functionality of apigenin: a review. Int J Food Prop 20:1197–1238. https://doi.org/10.1080/10942912.2016.1207188

    Article  CAS  Google Scholar 

  63. Salehi B, Venditti A, Sharifi-Rad M et al (2019) The therapeutic potential of Apigenin. Int J Mol Sci. https://doi.org/10.3390/ijms20061305

    Article  PubMed  PubMed Central  Google Scholar 

  64. Dosunmu A (2018) Apigenin and apigeninidin isolates from the Sorghum bicolor leaf targets inflammation via cyclo-oxygenase-2 and prostaglandin-E 2 blockade. Int J Rheum Dis 21:1487–1495. https://doi.org/10.1111/1756-185X.13355

    Article  CAS  PubMed  Google Scholar 

  65. Khan S, Greenberg JD, Bhardwaj N (2009) Dendritic cells as targets for therapy in rheumatoid arthritis. Nat Rev Rheumatol 5:566–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Li X, Han Y, Zhou Q et al (2016) Apigenin, a potent suppressor of dendritic cell maturation and migration, protects against collagen-induced arthritis. J Cell Mol Med 20:170–180

    Article  PubMed  Google Scholar 

  67. Li Y, Yang B, Bai J et al (2019) International immunopharmacology the roles of synovial hyperplasia, angiogenesis and osteoclastogenesis in the protective effect of apigenin on collagen-induced arthritis. Int Immunopharmacol 73:362–369. https://doi.org/10.1016/j.intimp.2019.05.024

    Article  CAS  PubMed  Google Scholar 

  68. Ganeshpurkar A, Saluja A (2019) The pharmacological potential of hesperidin. Indian J Biochem Biophys 56:287–300

    CAS  Google Scholar 

  69. Ahmad S, Alam K, Hossain MM et al (2016) Anti-arthritogenic and cardioprotective action of hesperidin and daidzein in collagen-induced rheumatoid arthritis. Mol Cell Biochem 423:115–127. https://doi.org/10.1007/s11010-016-2830-y

    Article  CAS  PubMed  Google Scholar 

  70. Matsuda S, Nakanishi A, Wada Y, Kitagishi Y (2013) Roles of PI3K/AKT/PTEN pathway as a target for harmaceutical therapy. Open Med Chem J 7:23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Qi W, Lin C, Fan K et al (2019) Hesperidin inhibits synovial cell inflammation and macrophage polarization through suppression of the PI3K/AKT pathway in complete Freund’s adjuvant-induced arthritis in mice. Chem Biol Interact 306:19–28. https://doi.org/10.1016/j.cbi.2019.04.002

    Article  CAS  PubMed  Google Scholar 

  72. Cici D, Corrado A, Rotondo C, Cantatore FP (2019) Wnt signaling and biological therapy in rheumatoid arthritis and spondyloarthritis. Int J Mol Sci 20:5552

    Article  CAS  PubMed Central  Google Scholar 

  73. Deshmukh A, Arfuso F, Newsholme P, Dharmarajan A (2019) Epigenetic demethylation of sFRPs, with emphasis on sFRP4 activation, leading to Wnt signalling suppression and histone modifications in breast, prostate, and ovary cancer stem cells. Int J Biochem Cell Biol 109:23–32

    Article  CAS  PubMed  Google Scholar 

  74. Galli LM, Barnes T, Cheng T et al (2006) Differential inhibition of Wnt-3a by Sfrp-1, Sfrp-2, and Sfrp-3. Dev Dyn an Off Publ Am Assoc Anat 235:681–690

    CAS  Google Scholar 

  75. Khan MA, Ahmed RS, Chandra N et al (2018) In vivo, extract from withania somnifera root ameliorates arthritis via regulation of key immune mediators of inflammation in experimental model of arthritis. Antiinflamm Antiallergy Agents Med Chem 18:55–70. https://doi.org/10.2174/1871523017666181116092934

    Article  CAS  Google Scholar 

  76. Giri KR (2016) Comparative study of anti-inflammatory activity of Withania somnifera (Ashwagandha) with hydrocortisone in experimental animals (Albino rats). J Med Plants Stud 4:78–83

    Google Scholar 

  77. Ludwiczuk A, Skalicka-Woźniak K, Georgiev MI (2017) Terpenoids. In: Pharmacognosy. Elsevier, pp 233–266

  78. Las Heras B, Rodriguez B, Bosca L, Villar AM (2003) Terpenoids: sources, structure elucidation and therapeutic potential in inflammation. Curr Top Med Chem 3:171–185

    Article  Google Scholar 

  79. Babalola IT, Shode FO (2013) Ubiquitous ursolic acid: a potential pentacyclic triterpene natural product. J Pharmacogn Phytochem 2:214–222

    CAS  Google Scholar 

  80. Kang S-Y, Yoon S-Y, Roh D-H et al (2008) The anti-arthritic effect of ursolic acid on zymosan-induced acute inflammation and adjuvant-induced chronic arthritis models. J Pharm Pharmacol 60:1347–1354. https://doi.org/10.1211/jpp/60.10.0011

    Article  CAS  PubMed  Google Scholar 

  81. Kim EY, Sudini K, Singh AK et al (2018) Ursolic acid facilitates apoptosis in rheumatoid arthritis synovial fibroblasts by inducing SP1-mediated Noxa expression and proteasomal degradation of Mcl-1. FASEB J 32:6174–6185. https://doi.org/10.1096/fj.201800425R

    Article  CAS  PubMed Central  Google Scholar 

  82. Yu H, Pardoll D, Jove R (2009) STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev cancer 9:798–809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Xu ZS, Zhang HX, Li WW et al (2019) FAM64A positively regulates STAT3 activity to promote Th17 differentiation and colitisassociated carcinogenesis. Proc Natl Acad Sci USA 116:10447–10452. https://doi.org/10.1073/pnas.1814336116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Jetten AM, Takeda Y, Slominski A, Kang HS (2018) Retinoic acid-related Orphan Receptor γ (RORγ): connecting sterol metabolism to regulation of the immune system and autoimmune disease. Curr Opin Toxicol 8:66–80

    Article  PubMed  PubMed Central  Google Scholar 

  85. Xu T, Wang X, Zhong B et al (2011) Ursolic acid suppresses interleukin-17 (IL-17) production by selectively antagonizing the function of RORγt protein. J Biol Chem 286:22707–22710. https://doi.org/10.1074/jbc.C111.250407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Krause A, Scaletta N, Ji J, Ivashkiv L (2002) Rheumatoid arthritis synoviocyte survival is dependent on Stat3. J Immunol 169:6610–6616. https://doi.org/10.4049/jimmunol.169.11.6610

    Article  CAS  PubMed  Google Scholar 

  87. Gupta S, Mishra KP, Kumar B et al (2020) Andrographolide attenuates complete freund’s adjuvant induced arthritis via suppression of inflammatory mediators and pro-inflammatory cytokines. J Ethnopharmacol 261:113022. https://doi.org/10.1016/j.jep.2020.113022

    Article  CAS  PubMed  Google Scholar 

  88. Gupta S, Mishra KP, Singh SB, Ganju L (2018) Inhibitory effects of andrographolide on activated macrophages and adjuvant-induced arthritis. Inflammopharmacology 26:447–456. https://doi.org/10.1007/s10787-017-0375-7

    Article  CAS  PubMed  Google Scholar 

  89. Ha J, Choi H-S, Lee Y et al (2010) CXC chemokine ligand 2 induced by receptor activator of NF-κB ligand enhances osteoclastogenesis. J Immunol 184:4717–4724. https://doi.org/10.4049/jimmunol.0902444

    Article  CAS  PubMed  Google Scholar 

  90. Papayannopoulos V, Metzler KD, Hakkim A, Zychlinsky A (2010) Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J Cell Biol 191:677–691. https://doi.org/10.1083/jcb.201006052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Strzepa A, Pritchard KA, Dittel BN (2017) Myeloperoxidase: a new player in autoimmunity. Cell Immunol 317:1–8. https://doi.org/10.1016/j.cellimm.2017.05.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. O’Neil LJ, Kaplan MJ (2019) Neutrophils in rheumatoid arthritis: breaking immune tolerance and fueling disease. Trends Mol Med 25:215–227. https://doi.org/10.1016/j.molmed.2018.12.008

    Article  CAS  PubMed  Google Scholar 

  93. Luo S, Li H, Liu J et al (2020) Andrographolide ameliorates oxidative stress, inflammation and histological outcome in complete Freund’s adjuvant-induced arthritis. Chem Biol Interact. https://doi.org/10.1016/j.cbi.2020.108984

    Article  PubMed  Google Scholar 

  94. Koushik S, Joshi N, Nagaraju S et al (2017) PAD4: pathophysiology, current therapeutics and future perspective in rheumatoid arthritis. Expert Opin Ther Targets 21:433–447

    Article  CAS  PubMed  Google Scholar 

  95. Li X, Yuan K, Zhu Q et al (2019) Andrographolide ameliorates rheumatoid arthritis by regulating the apoptosis–NETosis balance of neutrophils. Int J Mol Sci. https://doi.org/10.3390/ijms20205035

    Article  PubMed  PubMed Central  Google Scholar 

  96. Shen ZT, Sigalov AB (2017) Rationally designed ligand-independent peptide inhibitors of TREM-1 ameliorate collagen-induced arthritis. J Cell Mol Med 21:2524–2534. https://doi.org/10.1111/jcmm.13173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Fan D, He X, Bian Y et al (2016) Triptolide modulates TREM-1 signal pathway to inhibit the inflammatory response in rheumatoid arthritis. Int J Mol Sci 17:1–14. https://doi.org/10.3390/ijms17040498

    Article  CAS  Google Scholar 

  98. Wright HL, Moots RJ, Bucknall RC, Edwards SW (2010) Neutrophil function in inflammation and inflammatory diseases. Rheumatology 49:1618–1631

    Article  CAS  PubMed  Google Scholar 

  99. Huang G, Yuan K, Zhu Q et al (2018) Triptolide inhibits the inflammatory activities of neutrophils to ameliorate chronic arthritis. Mol Immunol 101:210–220. https://doi.org/10.1016/j.molimm.2018.06.012

    Article  CAS  PubMed  Google Scholar 

  100. Wang S, Liu Z, Wang J et al (2019) The triptolide-induced apoptosis of osteoclast precursor by degradation of cIAP2 and treatment of rheumatoid arthritis of TNF-transgenic mice. Phyther Res 33:342–349. https://doi.org/10.1002/ptr.6224

    Article  CAS  Google Scholar 

  101. Gong Y, Huang X, Di Wang ML, Liu Z (2017) Triptolide protects bone against destruction by targeting RANKL-mediated ERK/AKT signalling pathway in the collagen-induced rheumatoid arthritis. Biomed Res 28

  102. Corradini E, Foglia P, Giansanti P et al (2011) Flavonoids: chemical properties and analytical methodologies of identification and quantitation in foods and plants. Nat Prod Res 25:469–495

    Article  CAS  PubMed  Google Scholar 

  103. Rizzato G, Scalabrin E, Radaelli M et al (2017) A new exploration of licorice metabolome. Food Chem 221:959–968

    Article  CAS  PubMed  Google Scholar 

  104. Hoxha M (2018) A systematic review on the role of eicosanoid pathways in rheumatoid arthritis. Adv Med Sci 63:22–29. https://doi.org/10.1016/j.advms.2017.06.004

    Article  PubMed  Google Scholar 

  105. Abbasi M, Mousavi MJ, Jamalzehi S et al (2019) Strategies toward rheumatoid arthritis therapy; the old and the new. J Cell Physiol 234:10018–10031. https://doi.org/10.1002/jcp.27860

    Article  CAS  PubMed  Google Scholar 

  106. Xie C, Li X, Wu J et al (2015) Anti-inflammatory activity of magnesium isoglycyrrhizinate through inhibition of phospholipase A2/arachidonic acid pathway. Inflammation 38:1639–1648. https://doi.org/10.1007/s10753-015-0140-2

    Article  CAS  PubMed  Google Scholar 

  107. Huang QC, Wang MJ, Chen XM et al (2016) Can active components of licorice, glycyrrhizin and glycyrrhetinic acid, lick rheumatoid arthritis? Oncotarget 7:1193–1202. https://doi.org/10.18632/oncotarget.6200

    Article  PubMed  Google Scholar 

  108. Andersson U, Harris HE (2010) The role of HMGB1 in the pathogenesis of rheumatic disease. Biochim Biophys Acta Gene Regul Mech 1799:141–148. https://doi.org/10.1016/j.bbagrm.2009.11.003

    Article  CAS  Google Scholar 

  109. Wang WJ, Yin SJ, Rong RQ (2015) PKR and HMGB1 expression and function in rheumatoid arthritis. Genet Mol Res 14:17864–17870

    Article  CAS  PubMed  Google Scholar 

  110. Kato M, Ospelt C, Gay RE et al (2014) Dual role of autophagy in stress-induced cell death in rheumatoid arthritis synovial fibroblasts. Arthritis Rheumatol 66:40–48

    Article  CAS  PubMed  Google Scholar 

  111. Shafik NM, El-Esawy RO, Mohamed DA et al (2019) Regenerative effects of glycyrrhizin and/or platelet rich plasma on type-II collagen induced arthritis: targeting autophay machinery markers, inflammation and oxidative stress. Arch Biochem Biophys 675:108095. https://doi.org/10.1016/j.abb.2019.108095

    Article  CAS  PubMed  Google Scholar 

  112. Liang B, Guo X-L, Jin J et al (2015) Glycyrrhizic acid inhibits apoptosis and fibrosis in carbon-tetrachloride-induced rat liver injury. World J Gastroenterol 21:5271–5280. https://doi.org/10.3748/wjg.v21.i17.5271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Zhou S, Liu G, Si Z et al (2020) Glycyrrhizin, an HMGB1 inhibitor, suppresses interleukin-1β-induced inflammatory responses in chondrocytes from patients with osteoarthritis. Cartilage. https://doi.org/10.1177/1947603520934858

    Article  PubMed  Google Scholar 

  114. Dean M, Murphy BT, Burdette JE (2017) Phytosteroids beyond estrogens: regulators of reproductive and endocrine function in natural products. Mol Cell Endocrinol 442:98–105

    Article  CAS  PubMed  Google Scholar 

  115. Khanna D, Sethi G, Ahn KS et al (2007) Natural products as a gold mine for arthritis treatment. Curr Opin Pharmacol 7:344–351

    Article  CAS  PubMed  Google Scholar 

  116. Lee Y-R, Lee J-H, Noh E-M et al (2008) Guggulsterone blocks IL-1β-mediated inflammatory responses by suppressing NF-κB activation in fibroblast-like synoviocytes. Life Sci 82:1203–1209

    Article  CAS  PubMed  Google Scholar 

  117. Boyce BF, Xing L (2008) Functions of RANKL/RANK/OPG in bone modeling and remodeling. Arch Biochem Biophys 473:139–146. https://doi.org/10.1016/j.abb.2008.03.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Ichikawa H, Aggarwal BB (2006) Guggulsterone inhibits osteoclastogenesis induced by receptor activator of nuclear factor-κB ligand and by tumor cells by suppressing nuclear factor-κB activation. Clin cancer Res 12:662–668

    Article  CAS  PubMed  Google Scholar 

  119. Tiwari P, Nayak P, Prusty SK, Sahu PK (2018) Phytochemistry and pharmacology of Tinospora cordifolia: a review. Syst Rev Pharm 9:70–78

    Article  CAS  Google Scholar 

  120. Hui W, Dai Y (2020) Therapeutic potential of aryl hydrocarbon receptor ligands derived from natural products in rheumatoid arthritis. Basic Clin Pharmacol Toxicol 126:469–474. https://doi.org/10.1111/bcpt.13372

    Article  CAS  PubMed  Google Scholar 

  121. Ishihara Y, Kado SY, Hoeper C et al (2019) Role of NF-kB RelB in aryl hydrocarbon receptor-mediated ligand specific effects. Int J Mol Sci 20:2652

    Article  CAS  PubMed Central  Google Scholar 

  122. Tong B, Yuan X, Dou Y et al (2016) Norisoboldine, an isoquinoline alkaloid, acts as an aryl hydrocarbon receptor ligand to induce intestinal Treg cells and thereby attenuate arthritis. Int J Biochem Cell Biol 75:63–73. https://doi.org/10.1016/j.biocel.2016.03.014

    Article  CAS  PubMed  Google Scholar 

  123. Øvrevik J, Låg M, Lecureur V et al (2014) AhR and Arnt differentially regulate NF-κB signaling and chemokine responses in human bronchial epithelial cells. Cell Commun Signal 12:1–17. https://doi.org/10.1186/s12964-014-0048-8

    Article  CAS  Google Scholar 

  124. Wei ZF, Lv Q, Xia Y et al (2015) Norisoboldine, an anti-arthritis alkaloid isolated from radix linderae, attenuates osteoclast differentiation and inflammatory bone erosion in an aryl hydrocarbon receptor-dependent manner. Int J Biol Sci 11:1113–1126. https://doi.org/10.7150/ijbs.12152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Luo Y, Wei Z, Chou G et al (2014) Norisoboldine induces apoptosis of fibroblast-like synoviocytes from adjuvant-induced arthritis rats. Int Immunopharmacol 20:110–116. https://doi.org/10.1016/j.intimp.2014.02.023

    Article  CAS  PubMed  Google Scholar 

  126. Vorrink SU, Domann FE (2014) Regulatory crosstalk and interference between the and hypoxia sensing pathways at the AhR-ARNT-HIF1α signaling node. Chem Biol Interact 218:82–88. https://doi.org/10.1016/j.cbi.2014.05.001

    Article  CAS  PubMed  Google Scholar 

  127. Tong B, Dou Y, Wang T et al (2015) Norisoboldine ameliorates collagen-induced arthritis through regulating the balance between Th17 and regulatory T cells in gut-associated lymphoid tissues. Toxicol Appl Pharmacol 282:90–99. https://doi.org/10.1016/j.taap.2014.11.008

    Article  CAS  PubMed  Google Scholar 

  128. Shen P, Jiao Y, Miao L, Amir JC (2020) Immunomodulatory effects of berberine on the inflamed joint reveal new therapeutic targets for rheumatoid arthritis management. J Cell Mol Med 24:12234–12245. https://doi.org/10.1111/jcmm.15803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Chander V, Aswal JS, Dobhal R, Uniyal DP (2017) A review on pharmacological potential of Berberine; an active component of Himalayan Berberis aristata. J Phytopharmacol 6(1):53–58

    Article  Google Scholar 

  130. Vomero M, Barbati C, Colasanti T et al (2018) Autophagy and rheumatoid arthritis: current knowledges and future perspectives. Front Immunol 9:1577

    Article  PubMed  PubMed Central  Google Scholar 

  131. Dinesh P, Rasool M (2019) Berberine mitigates IL - 21 / IL - 21R mediated autophagic influx in fibroblast—like synoviocytes and regulates Th17/Treg imbalance in rheumatoid arthritis. Apoptosis 24:644–661. https://doi.org/10.1007/s10495-019-01548-6

    Article  CAS  PubMed  Google Scholar 

  132. Zhou J, Yu Y, Yang X et al (2019) Berberine attenuates arthritis in adjuvant-induced arthritic rats associated with regulating polarization of macrophages through AMPK/NF-к B pathway. Eur J Pharmacol 852:179–188. https://doi.org/10.1016/j.ejphar.2019.02.036

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Government of India for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dharmendra Kumar Khatri.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patidar, V., Shah, S., Kumar, R. et al. A molecular insight of inflammatory cascades in rheumatoid arthritis and anti-arthritic potential of phytoconstituents. Mol Biol Rep 49, 2375–2391 (2022). https://doi.org/10.1007/s11033-021-06986-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06986-7

Keywords

Navigation