Skip to main content
Log in

Mapping and diagnostic marker development for Soil-borne cereal mosaic virus resistance in bread wheat

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Monogenically-inherited resistance to Soil-borne cereal mosaic virus (SBCMV) in hexaploid bread wheat cultivars ‘Tremie’ and ‘Claire’ was mapped on chromosome 5D. The two closest flanking markers identified in the Claire-derived mapping population, Xgwm469-5D and E37M49, are linked to the resistance locus at distances of 1 and 9 cm, respectively. Xgwm469-5D co-segregated with the SBCMV resistance in the Tremie-derived population and with the recently identified Sbm1 locus in the cv. Cadenza. This suggested that Tremie and Claire carry a resistance gene allelic to Sbm1, or one closely linked to it. The diagnostic value of Xgwm469-5D was assessed using a collection of SBCMV resistant and susceptible cultivars. Importantly, all susceptible genotypes carried a null allele of Xgwm469-5D, whereas resistant genotypes presumably related to either Claire and Tremie or Cadenza revealed a 152 or 154 bp allele of Xgwm469-5D, respectively. Therefore, Xgwm469-5D is well suited for marker assisted selection for SBCMV resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Balfourier F, Roussel V, Strelchenko P, Exbrayat F, Sourdille P, Boutet G, Koenig J, Ravel C, Mitrofanova O, Beckert M, Charmet G (2007) A worldwide bread wheat core-collection arrayed in a 384-well plate. Theor Appl Genet 114:1265–1275. doi:10.1007/s00122-007-0517-1

    Article  PubMed  Google Scholar 

  • Barbosa MM, Goulart LR, Prestes AM, Juliatti FC (2001) Genetic control of resistance to soil-borne wheat mosaic virus in Brazilian cultivars of Triticum aestivum L. Thell. Euphytica 122:417–422. doi:10.1023/A:1012937116394

    Article  Google Scholar 

  • Bass C, Hendley R, Adams MJ, Hammond-Kosack KE, Kanyuka K (2006) The Sbm1 locus conferring resistance to Soil-borne cereal mosaic virus maps to a gene-rich region on 5DL in wheat. Genome 49:1140–1148. doi:10.1139/G06-064

    Article  PubMed  CAS  Google Scholar 

  • Bayles RA, Napier B (2002) Tolerance of wheat varieties to Soil-borne wheat mosaic virus (SBWMV). HGCA project report No. 278. Home-Grown Cereals Authority, London

    Google Scholar 

  • Brakke MK, Langenberg WG (1988) Experiences with soil-borne wheat mosaic virus in North America and elsewhere. In: Cooper JI, Asher MJC (eds) Developments in applied biology II. Viruses with Fungal Vectors. Association of Applied Biologists, Wellesbourne, pp 183–202

    Google Scholar 

  • Brownstein MJ, Carpten JD, Smith JR (1996) Modulation of non-templated nucleotide addition by Taq DNA polymerase: primer modifications that facilitate genotyping. Biotechniques 20:1004–1010

    PubMed  CAS  Google Scholar 

  • Budge G, Henry CM (2002) Assessing resistance of UK winter wheat varieties to Soil-borne wheat mosaic virus and Wheat spindle streak mosaic virus. HGCA project report, 2002, No. 293. Home-Grown Cereals Authority, London

    Google Scholar 

  • Clark MF, Adams AN (1977) Characteristics of the microplate method of enzyme-linked immunosorbent assay for the detection of plant viruses. J Gen Virol 34:475–483. doi:10.1099/0022-1317-34-3-475

    Article  PubMed  CAS  Google Scholar 

  • Clover GRG, Ratti C, Henry CM (2001) Molecular characterization and detection of European isolates of Soil-borne wheat mosaic virus. Plant Pathol 50:761–767. doi:10.1046/j.1365-3059.2001.00634.x

    Article  CAS  Google Scholar 

  • Cox TS, Sorrells ME, Bergstrom GC, Sears RG, Gill BS, Walsh EJ, Leath S, Murphy JP (1994) Registration of KS92WGRC21 and KS92WGRC22 hard red winter wheat germplasms resistant to wheat streak mosaic virus and powdery mildew. Crop Sci 34:546

    Google Scholar 

  • Devaux P, Pickering R (2005) Haploids in the improvement of Poaceae. In: Palmer D, Keller W, Kasha K (eds) Haploids in crop improvement II. Springer, Heidelberg, pp 215–242

    Chapter  Google Scholar 

  • Endo TR, Gill BS (1996) The deletion stocks of common wheat. J Hered 87:295–307

    CAS  Google Scholar 

  • Graner A, Jahoor A, Schondelmaier J, Siedler H, Pillen K, Fischbeck G, Wenzel G, Herrmann RG (1991) Construction of an RFLP map in barley. Theor Appl Genet 83:250–256. doi:10.1007/BF00226259

    Article  Google Scholar 

  • Graner A, Streng S, Kellermann A, Schiemann A, Bauer E, Waugh R, Pellio B, Ordon F (1999) Molecular mapping and fine structure of the rym5 locus encoding resistance to different strains of the barley yellow mosaic virus complex. Theor Appl Genet 98:285–290. doi:10.1007/s001220051070

    Article  CAS  Google Scholar 

  • Hariri D, Courtillot M, Zaoui P, Lapierre H (1987) Multiplication of Soil-borne wheat mosaic virus (SBWMV) in wheat roots infected by a soil carrying SBWMV and Wheat yellow mosaic virus (WYMV). Agronomie 7:789–796. doi:10.1051/agro:19871005

    Article  Google Scholar 

  • Huang XQ, Borner A, Borner A, Röder MS, Ganal MW (2002) Assessing genetic diversity of wheat (Triticum aestivum L.) germplasm using microsatellite markers. Theor Appl Genet 105:699–707. doi:10.1007/s00122-002-0959-4

    Article  PubMed  CAS  Google Scholar 

  • Huth W (1989) Ein weiterer stamm des barley yellow mosaic virus in der bundesrepublik Deutschland. Nachrichtenbl Deut Pflanzenschutzd 40:49–55

    Google Scholar 

  • Kanyuka K, Lovell D, Mitrofanova OP, Hammond-Kosack K, Adams MJ (2004) A controlled environment test for resistance to Soil-borne cereal mosaic virus and its use to determine the mode of inheritance of the resistance in the UK wheat variety Cadenza, and to screen diverse Triticum monococcum genotypes for potential sources of improved disease resistance. Plant Pathol 53:154–160. doi:10.1111/j.0032-0862.2004.01000.x

    Article  Google Scholar 

  • Kastirr U, Wortmann H, Ehrig F (2006) Untersuchungen zum Infektionsverlauf und zur biologischen differenzierung von bodenbürtigen viren in roggen, triticale und weizen. Gesund Pflanz 58:231–238. doi:10.1007/s10343-006-0136-9

    Article  Google Scholar 

  • Koenig R, Huth W (2000) Soil-borne rye mosaic virus and European wheat mosaic virus : two names for a furovirus with variable genome properties which is widely distributed in several cereal crops in Europe. Arch Virol 145:689–697. doi:10.1007/s007050050663

    Article  PubMed  CAS  Google Scholar 

  • Lyons R, Hammnd-Kosack KE, Kanyuka K (2008) Identification and characterization of a novel efficient resistance response to the furoviruses SBWMV and SBCMV in barley. Mol Plant Microbe Interact 21:1193–1204. doi:10.1094/MPMI-21-9-1193

    Article  PubMed  CAS  Google Scholar 

  • McKinney HH (1923) Investigation of the rosette disease of wheat and its control. J Agric Res 23:771–800

    Google Scholar 

  • Merkle OG, Smith EL (1983) Inheritance of resistance to soil-borne mosaic in wheat. Crop Sci 23:1075–1076

    Article  Google Scholar 

  • Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease resistant genes by bulk segregant analysis: a rapid method to detect markers in specific genomic regions using segregating populations. Proc Natl Acad Sci USA 88:9828–9832. doi:10.1073/pnas.88.21.9828

    Article  PubMed  CAS  Google Scholar 

  • Modawi RS, Heyne EG, Brunetta D, Willis WG (1982) Genetic studies of field reaction to wheat soil-borne mosaic virus. Plant Dis 66:1183–1184

    Google Scholar 

  • Myers LD, Sherwood JL, Siegerist WC, Hunger RM (1993) Temperature-influenced virus movement in expression of resistance to Soilborne wheat mosaic virus in hard red winter wheat (Triticum aestivum). Phytopathology 83:548–551. doi:10.1094/Phyto-83-548

    Article  Google Scholar 

  • Ordon F, Friedt W, Scheurer K, Pellio B, Werner K, Neuhaus G, Huth W, Habekuss A, Graner A (2004) Molecular markers in breeding for virus resistance in barley. J Appl Genet 45:145–159

    PubMed  Google Scholar 

  • Perovic D, Weyen J, Schondelmaier J, Förster J, Devaux P, Hariri D, Feuerhelm D, Stein N, Graner A, Ordon F (2005) Linkage mapping and transcription profiling of resistance to soil-borne viruses in hexaploid wheat (Triticum vulgare sp. aestivum). Parasitica 61:79–84

    Google Scholar 

  • Proeseler G, Stanarius A (1983) Nachweis des weizenspindelstrichelmosaik-virus (wheat spindle streak mosaic virus) in der DDR. Arch Phytopathol Pflanzenschutz 19:345–349

    Article  Google Scholar 

  • Rao AS, Brakke MK (1969) Relation of soil-borne wheat mosaic virus and its fungal vector, Polymyxa graminis. Phytopathology 59:581–587

    Google Scholar 

  • Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023

    PubMed  Google Scholar 

  • Saito Y, Takanashi K, Iwata Y, Okamoto H (1964) Studies on soil-borne virus disease of wheat and barley. I. Several properties of viruses. Bull Natl Inst Agr Sci (Japan) Ser C 17:1–19

    Google Scholar 

  • Sears ER (1954) The aneuploids of common wheat. Univ Mo Agric Exp Stn Res Bull 572:1–58

    Google Scholar 

  • Sears ER (1966) Nullisomic-tetrasomic combinations in hexaploid wheat. In: Riley R, Lewis KR (eds) Chromosome manipulation and plant genetics. Oliver & Boyd, Edinburgh, pp 29–45

    Google Scholar 

  • Somers DJ, Peter I, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114. doi:10.1007/s00122-004-1740-7

    Article  PubMed  CAS  Google Scholar 

  • Stam P (1993) Construction of integrated genetic linkage maps by means of a computer package: JOINMAP. Plant J 3:739–744

    Article  CAS  Google Scholar 

  • Torrance L, Koenig R (2004) Furovirus. In: Fauquet CM, Mayo MA, Maniloff J, Desselberger U, Ball LA (eds) Virus taxonomy, classification and nomenclature of viruses. Elsevier, Amsterdam, pp 1027–1032

    Google Scholar 

  • Werner JE, Endo TR, Gill BS (1992) Towards a cytogenetically based physical map of the wheat genome. Proc Natl Acad Sci USA 89:11307–11311. doi:10.1073/pnas.89.23.11307

    Article  PubMed  CAS  Google Scholar 

  • Wicker T, Krattinger S, Lagudah ES, Komatsuda T, Pourkheirandish M, Matsumoto T, Cloutier S, Kanamori H, Sato K, Perovic D, Stein N, Keller B (2009) Analysis of intraspecies diversity in wheat and barley genomes identifies breakpoints of ancient haplotypes and provides insight in the structure of diploid and hexaploid Triticeae gene pools wheat. Plant Physiol 149:258–270. doi:10.1104/pp.108.129734

    Article  PubMed  CAS  Google Scholar 

  • Zhang LY, Bernard M, Leroy P, Feuillet C, Sourdille P (2005) High transferability of bread wheat EST-derived SSRs to other cereals. Theor Appl Genet 111:677–687. doi:10.1007/s00122-005-2041-5

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work is supported by a grant in the European Community’s Sixth Framework Program WHEATPROTECT (EU contract number COOP-CT-2004-512703). These results and this publication reflect only the author’s view and EU is not liable for any use that may be made of the information contained in this article. The authors like to thank Prof. B. Gill (Kansas State University, USA) for kindly providing seeds of NT and 5DL5 Chinese Spring lines, Dr. L. Sayers (John Innes Centre, UK) for providing Avalon × Cadenza DH mapping population, and various European wheat breeding companies as well as Dr. H. E. Bockelman (National Small Grains Collection, USDA Aberdeen, USA) and Dr. R. Singh (CIMMYT, Mexico) for providing wheat genotypes used in disease resistance tests and/or molecular genetic analyses. We are also grateful to Dr. R. Bayles (NIAB, Cambridge, UK) and Mr. M. Oatley (Paxcroft Farms, Trowbridge, UK) for letting us sample SBCMV-infested soil in Wiltshire site. We would also like to thank Ms. B. Knüpfer and M. Weilepp for excellent technical assistance. Rothamsted Research receives grant-aided support from the Biotechnology and Biological Sciences Research Council of the United Kingdom.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Ordon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perovic, D., Förster, J., Devaux, P. et al. Mapping and diagnostic marker development for Soil-borne cereal mosaic virus resistance in bread wheat. Mol Breeding 23, 641–653 (2009). https://doi.org/10.1007/s11032-009-9262-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-009-9262-2

Keywords

Navigation