Skip to main content
Log in

ELF-MF attenuates quercetin-induced apoptosis in K562 cells through modulating the expression of Bcl-2 family proteins

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

This study investigated the effects of sinusoidal ELF-MF (1 mT; 50 Hz) on the apoptosis induced by four different compounds, namely vinblastine, etoposide, quercetin, and resveratrol, in human K562 chronic myeloid leukemia cells. The exposure to ELF-MF did not affect growth and viability of untreated K562 cells and did not influence the anti-proliferative effects of resveratrol, vinblastine, and etoposide. On the contrary, in quercetin-treated cells, exposure to ELF-MF significantly reduced the percentage of apoptotic cells and the caspase-3 activity and modified the cell cycle profile especially after 48 h of exposure. In addition, the simultaneous treatments for 24 h with quercetin plus ELF-MF increased Bcl-2 protein expression and prevented quercetin-induced downregulation of Mcl-1 and Bcl-xL. Finally, an increase of HSP70 expression was also observed after prolonged ELF-MF treatment. The ELF-MF-dependent modulation of the expression of anti-apoptotic Bcl-2 family and Hsp70 proteins could act as a pro-survival mechanism in K562 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Vianale G, Reale M, Amerio P, Stefanachi M, Di Luzio S, Muraro R (2008) Extremely low frequency electromagnetic field enhances human keratinocyte cell growth and decreases proinflammatory chemokine production. Br J Dermatol 158:1189–1196

    Article  PubMed  CAS  Google Scholar 

  2. Inhan-Garip A, Akan Z, Oncul Ş, Işal-Turgut I, Tunaya K (2010) Differentiation of K562 cells under ELF-EMF applied at different time courses. Electromagn Biol Med 29:122–130

    Article  Google Scholar 

  3. Sun RG, Chen WF, Qi H, Zhang K, Bu T, Liu Y, Wang SR (2012) Biologic effects of SMF and paclitaxel on K562 human leukemia cells. Gen Physiol Biophys 31:1–10

    Article  PubMed  Google Scholar 

  4. Iorio R, Bennato F, Mancini F, Colonna R (2013) ELF-MF transiently increases skeletal myoblast migration: possible role of calpain system. Int J Radiat Biol 89:548–561

    Article  PubMed  CAS  Google Scholar 

  5. Zwirska-Korczala K, Jochem J, Adamczyk-Sowa M, Sowa P, Polaniak R, Birkner E, Latocha M, Pilc K, Suchanek R (2005) Effect of extremely low frequency of electromagnetic fields on cell proliferation, antioxidative enzyme activities and lipid peroxidation in 3T3-L1 preadipocytes-an in vitro study. J Physiol Pharmacol 6:101–108

    Google Scholar 

  6. Wolf FI, Torsello A, Tedesco B, Fasanella S, Boninsegna A, D’Ascenzo M, Grassi C, Azzena GB, Cittadini A (2005) 50-Hz extremely low frequency electromagnetic fields enhance cell proliferation and DNA damage: possible involvement of a redox mechanism. Biochim Biophys Acta 1743:120–129

    Article  PubMed  CAS  Google Scholar 

  7. Di Loreto S, Falone S, Caracciolo V, Sebastiani P, D’Alessandro A, Mirabilio A, Zimmitti V, Amicarelli F (2009) Fifty hertz extremely low-frequency magnetic field exposure elicits redox and trophic response in rat-cortical neurons. J Cell Physiol 219:334–343

    Article  PubMed  Google Scholar 

  8. Iorio R, Delle Monache S, Bennato F, Di Bartolomeo C, Scrimaglio R, Cinque B, Colonna R (2011) Involvement of mitochondrial activity in mediating ELF-EMF stimulatory effect on human sperm motility. Bioelectromagnetics 32:15–27

    Article  PubMed  CAS  Google Scholar 

  9. Piacentini R, Ripoli C, Mezzogori D, Azzena GB, Grassi C (2008) Extremely low-frequency electromagnetic fields promote in vitro neurogenesis via up-regulation of Ca(v)1-channel activity. J Cell Physiol 215:129–139

    Article  PubMed  CAS  Google Scholar 

  10. Thomadaki H, Scolaris A (2006) BCL2 family of apoptosis-related genes: functions and clinical implications in cancer. Crit Rev Clin Lab Sci 43:1–67

    Article  PubMed  CAS  Google Scholar 

  11. Röösli M, Lörtscher M, Egger M, Pfluger D, Schreier N, Lörtscher E, Locher P, Spoerri A, Minder C (2007) Leukemia, brain tumours and exposure to extremely low frequency magnetic fields: Cohort study of Swiss railway employees. Occup Environ Med 64:553–559

    Article  PubMed  PubMed Central  Google Scholar 

  12. Simkó M, Kriehuber R, Weiss DG, Luben RA (1998) Effects of 50 Hz EMF exposure on micronucleus formation and apoptosis in transformed and nontransformed human cell lines. Bioelectromagnetics 19:85–91

    Article  PubMed  Google Scholar 

  13. Kim J, Ha CS, Lee HJ, Song K (2010) Repetitive exposure to a 60-Hz time-varying magnetic field induces DNA double-strand breaks and apoptosis in human cells. Biochem Biophys Res Commun 400:739–744

    Article  PubMed  CAS  Google Scholar 

  14. Santini MT, Ferrante A, Rainaldi G, Indovina P, Indovina PL (2005) Extremely low frequency (ELF) magnetic fields and apoptosis: a review. Int J Radiat Biol 81:1–11

    Article  PubMed  CAS  Google Scholar 

  15. Inhan-Garip A, Akan Z (2010) Effect of ELF-EMF on number of apoptotic cells; correlation with reactive oxygen species and HSP. Acta Biol Hung 61:158–167

    Article  Google Scholar 

  16. Jian W, Wei Z, Zhiqiang C, Zheng F (2009) X-ray-induced apoptosis of BEL-7402 cell line enhanced by extremely low frequency electromagnetic field in vitro. Bioelectromagnetics 30:163–165

    Article  PubMed  Google Scholar 

  17. Luukkonen J, Liimatainen A, Höytö A, Juutilainen J, Naarala J (2011) Pre-exposure to 50 Hz magnetic fields modifies menadione-induced genotoxic effects in human SH-SY5Y neuroblastoma cells. PlosOne 6:e18021

    Article  CAS  Google Scholar 

  18. Basile A, Zeppa R, Pasquino N, Arra C, Ammirante M, Festa M, Barbieri A, Giudice A, Pascale M, Turco MC, Rosati A (2011) Exposure to 50 Hz electromagnetic field raises the levels of the anti-apoptotic protein BAG3 in melanoma cells. J Cell Physiol 226:2901–2907

    Article  PubMed  CAS  Google Scholar 

  19. Kelly GS (2011) Quercetin. Monograph. Altern Med Rev 16:172–194

    PubMed  Google Scholar 

  20. Brisdelli F, D’Andrea G, Bozzi A (2009) Resveratrol: a natural polyphenol with multiple chemopreventive properties. Curr Drug Metab 10:530–546

    Article  PubMed  CAS  Google Scholar 

  21. Luzi C, Brisdelli F, Cinque B, Cifone G, Bozzi A (2004) Differential sensitivity to resveratrol-induced apoptosis of human chronic myeloid (K562) and acute lymphoblastic (HSB-2) leukemia cells. Biochem Pharmacol 68:2019–2030

    Article  PubMed  CAS  Google Scholar 

  22. Brisdelli F, Coccia C, Cinque B, Cifone MG, Bozzi A (2007) Induction of apoptosis by quercetin: different response of human chronic myeloid (K562) and acute lymphoblastic (HSB-2) leukemia cells. Mol Cell Biochem 296:137–149

    Article  PubMed  CAS  Google Scholar 

  23. Kirschvink JL (1992) Uniform magnetic fields and double-wrapped coil systems: improved techniques for the design of bioelectromagnetic experiments. Bioelectromagnetics 13:401–411

    Article  PubMed  CAS  Google Scholar 

  24. McGahon AJ, Martin SJ, Bissonnette RP, Mahboubi A, Shi Y, Mogil RJ, Nishioka WK, Green DR (1995) The end of the (cell) line: methods for the study of apoptosis in vitro. Methods Cell Biol 46:153–185

    Article  PubMed  CAS  Google Scholar 

  25. Kohlex C, Orrenius S, Zhivatovsky B (2002) Evaluation of caspase activity in apoptotic cells. J Immunol Methods 265:97–110

    Article  Google Scholar 

  26. LeBel CP, Ishiropoulos H, Bondy SC (1992) Evaluation of the probe 2′,7′-dichlorofluorescin as an indicator of reactive species formation and oxidative stress. Chem Res Toxicol 5:227–231

    Article  PubMed  CAS  Google Scholar 

  27. Tokalov SV, Gutzeit H (2004) Weak electromagnetic fields (50 Hz) elicit a stress response in human cells. Environ Res 94:145–151

    Article  PubMed  CAS  Google Scholar 

  28. Paradisi S, Donelli G, Santini MT, Straface E, Malorni W (1993) A 50-Hz magnetic fields induces structural and biophysical changes in membranes. Bioelectromagnetics 14:247–255

    Article  PubMed  CAS  Google Scholar 

  29. Mannerling A-C, Simkó, Mild KH, Mattsson M-O (2010) Effects of 50-Hz magnetic field exposure on superoxide radical anion formation and HSP70 induction in human K562 cells. Radiat Environ Biophys 49:731–741

    Article  PubMed  CAS  Google Scholar 

  30. Eleuteri AM, Amici M, Bonfili L, Cecarini V, Cuccioloni M, Grimaldi S, Giuliani L, Angeletti M, Fioretti E (2009) 50 Hz extremely low frequency electromagnetic fields enhance protein carbonyl groups content in cancer cells: effects on proteasomal systems. J Biomed Biotechnol 2009:834239

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Focke F, Schuermann D, Kuster N, Schär P (2010) DNA fragmentation in human fibroblasts under extremely low frequency electromagnetic field exposure. Mutat Res 683:74–83

    Article  PubMed  CAS  Google Scholar 

  32. Markov MS (2010) Angiogenesis, magnetic fields and ‘window effects’. Cardiology 117:54–56

    Article  PubMed  Google Scholar 

  33. Vijayababu M, Kanagaraj P, Arunkumar A, Ilangovan R, Aruldhas M, Arunakaran J (2005) Quercetin-induced growth inhibition and cell death in prostatic carcinoma cells (PC-3) are associated with increase in p21 and hypophosphorylated retinoblastoma proteins expression. J Cancer Res Clin Oncol 131:765–771

    Article  PubMed  CAS  Google Scholar 

  34. Vidya Priyadarsini R, Senthil Murugan R, Maitreyi S, Ramalingam K, Karunagaran D, Nagini S (2010) The flavonoid quercetin induces cell cycle arrest and mitochondrial-mediated apoptosis in human cervical cancer (HeLa) cells through p53 induction and NF-kB inhibition. Eur J Pharmacol 649:84–91

    Article  PubMed  CAS  Google Scholar 

  35. Kim W, Bang M, Kim E, Kang N, Jung K, Cho H, Park JH (2005) Quercetin decreases the expression of ErbB2 and ErbB3 proteins in HT-29 human colon cancer cells. J Nutr Biochem 16:155–162

    Article  PubMed  CAS  Google Scholar 

  36. Chen D, Daniel K, Chen M, Kuhn D, Landis-Piwowar K, Dou Q (2005) Dietary flavonoids as proteasome inhibitors and apoptosis inducers in human leukemia cells. Biochem Pharmacol 69:1421–1432

    Article  PubMed  CAS  Google Scholar 

  37. Zhang X-M, Chen J, Xia Y-G, Xu Q (2005) Apoptosis of murine melanoma B16-BL6 cells induced by quercetin targeting mitochondria, inhibiting expression of PKC-alfa and translocating PKC-delta. Cancer Chemother Pharmacol 55:251–262

    Article  PubMed  CAS  Google Scholar 

  38. Ding G-R, Nakahara T, Tian F-R, Guo Y, Miyakoshi J (2001) Transient suppression of X-ray-induced apoptosis by exposure to power frequency magnetic fields in MCF-7 cells. Biochem Biophys Res Commun 286:953–957

    Article  PubMed  CAS  Google Scholar 

  39. Tian F, Nakahara T, Yoshida M, Honda N, Hirose H, Miyakoshi J (2002) Exposure to power frequency magnetic fields suppresses X-ray-induced apoptosis transiently in Ku80-deficient xrs5 cells. Biochem Biophys Res Commun 292:355–361

    Article  PubMed  CAS  Google Scholar 

  40. Deng X, Gao F, May WS (2003) Bcl2 retards G1/S cell cycle transition by regulating intracellular ROS. Blood 102:3179–3185

    Article  PubMed  CAS  Google Scholar 

  41. Weng C, Li Y, Xu D, Shi Y, Tang H (2005) Specific cleavage of Mcl-1 by caspase-3 in tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in Jurkat leukemia T cells. J Biol Chem 280:10491–10500

    Article  PubMed  CAS  Google Scholar 

  42. Fanelli C, Coppola S, Barone R, Colussi C, Gualandi G, Volpe P, Ghibelli L (1999) Magnetic fields increase cell survival by inhibiting apoptosis via modulation of Ca2+ influx. FASEB J 13:95–102

    PubMed  CAS  Google Scholar 

  43. Rong Y, Distelhorst CW (2008) Bcl-2 protein family members: versatile regulators of calcium signaling in cell survival and apoptosis. Ann Rev Physiol 70:73–91

    Article  CAS  Google Scholar 

  44. De Nicola M, Cordisco S, Cerella C, Albertini MC, D’Alessio M, Accorsi A, Bergamaschi A, Magrini A, Ghibelli L (2006) Magnetic fields protect from apoptosis via redox alteration. Ann NY Acad Sci 1090:59–68

    Article  PubMed  Google Scholar 

  45. Buldak RJ, Polaniak R, Buldak L, Zwirska-Korczala Ż, Skonieczna M, Monsiol A, Kukla M, Duława-Bułdak A, Birkner E (2012) Short-term exposure to 50 Hz ELF-EMF alters the cisplatin-induced oxidative response in AT478 murine squamous cell carcinoma cells. Bioelectromagnetics 33:641–651

    Article  PubMed  CAS  Google Scholar 

  46. Wei Y, Zhao X, Kariya Y, Fukata H, Teshigawara K, Uchida A (1994) Induction of apoptosis by quercetin: involvement of heat shock protein. Cancer Res 54:4952–4957

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by a grant from MIUR (Ministero dell‘Istruzione, dell‘Università e della Ricerca), MURST EX 60 %, to Prof. Argante Bozzi and Dr. Fabrizia Brisdelli.

Conflict of interest

There was no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrizia Brisdelli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brisdelli, F., Bennato, F., Bozzi, A. et al. ELF-MF attenuates quercetin-induced apoptosis in K562 cells through modulating the expression of Bcl-2 family proteins. Mol Cell Biochem 397, 33–43 (2014). https://doi.org/10.1007/s11010-014-2169-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-014-2169-1

Keywords

Navigation