Skip to main content
Log in

The reduction effect and mechanism of Deinococcus radiodurans transformed dsrA gene to uranyl ions

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Deinococcus radiodurans (DR) is highly resistant to ionizing radiation. This study aims to convert dsrA gene into DR to construct radiation-resistant genetically engineered bacteria (Deino-dsrA) with high reducibility, so as to enhance the reducing and enrichment ability of DR. Methods: the recombinant vector pRADK-dsrA was extracted and transformed into DR. 1. Radiation resistant gene engineering bacteria containing dsrA gene were constructed successfully. 2. In the most favorable conditions,contributing to approximately 92.45% U (VI) was removed. 3. Autioxidant enzyme activities in Deino-dsrA is higher than in Deino-pRADK, excepting the content of malondialdehyde. The uranium enrichment ability of the Deino-dsrA is better than the wild DR, and dsrA gene can increase its antioxidation capability by increasing the activity of oxidase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Xi J, Wang J, Liang B (2019) A review of nuclear energy research. Shandong Chem 48(21):51–52

    Google Scholar 

  2. Guo H et al (2018) High radionuclides in groundwater of an inland basin from Northwest China: origin and fate. Acs Earth Space Chem 2(11):1137–1144

    Article  CAS  Google Scholar 

  3. Wang QY (2000) Radioactive hazards of uranium mines and their prevention and control. China Mining Magazine 9(1):81–83

    CAS  Google Scholar 

  4. Loiseau T, Mihalcea I, Henry N, Volkringer C (2014) The crystal chemistry of uranium carboxylates. Coord Chem Rev 266/267(May):69–109

    Article  Google Scholar 

  5. Zhao C, Wang B, Wang SP, Huang YM, Lei ZW (2020) Removal of uranium from a uranium mine wastewater by ion-exchange resin adsorption. Min Metall 29(06):83–86

    Google Scholar 

  6. Zhang YL, Wang M, Zhang Y, Guo F (2021) Experimental study on the reductive treatment of uranium - containing wastewater by membrane distillatio. Technol Water Treat 1–5

  7. Guo M (2020) Progress in the treatment of uranium-containing wastewater. Technol Innov Appl 326(34):125–126

    Google Scholar 

  8. Kulkarni S, Ballal A, Apte SK (2013) Bioprecipitation of uranium from alkaline waste solutions using recombinant Deinococcus radiodurans. J Hazard Mater 262:853–861

    Article  CAS  Google Scholar 

  9. Gadd GM, Pan X (2016) Biomineralization, bioremediation and biorecovery of toxic metals and radionuclides. Geomicrobiol J 33(3–4):175–178

    Article  CAS  Google Scholar 

  10. Li YP, Zhong J (2002) Cloning and sequencing of a dsrA gene encoding dissimilatory sulfite reductase in a sulfate reducing bacteria consortium (SRB III). J Fudan Univ Nat Sci 41(06):674–678

    CAS  Google Scholar 

  11. Zhao YG, Ren NQ, Wang AJ, Shang HX (2006) Characterization of efficiency- enhancing bacterium for sulfate wastewater treatment and structure analysis of dissimilatory sulfite reductase gene. CIESC J 57:2401–2406

    CAS  Google Scholar 

  12. Chou FI, Tan ST (1990) Manganese(II) induces cell division and increases in superoxide dismutase and catalase activities in an aging deinococcal culture. J Bacteriol 172(4):2029–2035

    Article  CAS  Google Scholar 

  13. Cong Y (2013) Effect of antioxident capacity on irradiated Pichia pastoris by the transfection of Deinococcus radiodurans pprl gene. J Radiat Res Radiat Process 31(04):33–36

    Google Scholar 

  14. Luo J, Zhu QQ, Li SS (2021) Construction of Deino-flr-2 radiation-tolerant genetically engineered strain containing flr-2 fluoride-tolerant gene and its enrichment behavior for U(VI). J Radioanal Nucl Chem 328(3):1265–1278

    Article  CAS  Google Scholar 

  15. Guo ZZ (2018) (2018) Study of Cu2+and Cr6+sorption by Deinococcus radiodurans. Chem Res Appl 30(03):327–332

    Google Scholar 

  16. Chiaki S (2021) Analysis of protein denaturation, aggregation and post-translational modification by agarose native gel electrophoresis. Int J Biol Macromol 172:589–596

    Article  Google Scholar 

  17. Asma EO (2021) Chromium (III) biosorption of deinococcus radiodurans and its vitreoscilla haemoglobin (vgb) gene-transferred recombinants. J Pharm Pharmacol 9:140–148

    Google Scholar 

  18. Guo ZZ (2018) Adsorption of copper, chromium and uranylions by Deinococcus radiodurans and construction of genetic engineering vector. University of South China

  19. Liang SJ (2010) Study on Construction and U(VI) Bioaccumulation performance of recombinant D. radiodurans phoN. University of South China

  20. Du L (2015) Determination of micro uranium by arsenazo spectrophotometry. Metall Anal 35(001):68–71

    CAS  Google Scholar 

  21. Li K (2020) Research progress on membrane separation technology for the utilization of copper- contaminating wastewater. China Resour Compr Utili 38(07):119–121

    CAS  Google Scholar 

  22. Illiyas M (2020) Understanding the survival mechanisms of Deinococcus radiodurans against oxidative stress by targeting thioredoxin reductase redox system. Arch Microbiol 202(9)

  23. Shang D (2021) Dynamic polyphosphate metabolism coordinating with manganese ions defends against oxidative stress in the extreme bacterium deinococcus radiodurans. Appl Environ Microbiol 87(7):e02785-e2820

    Article  Google Scholar 

  24. Gao L (2020) Comparative proteomics analysis reveals new features of the oxidative stress response in the polyextremophilic bacterium deinococcus radiodurans. Microorganisms 8(3):451

    Article  CAS  Google Scholar 

  25. Pavel K (2021) Measuring the concentration of protein nanoparticles synthesized by desolvation method: comparison of bradford assay, BCA assay, hydrolysis/UV spectroscopy and gravimetric analysis. Int J Pharm 599:120422

    Article  Google Scholar 

  26. Huang LJ, Yi FC (2011) Red beds of chemical species of uranium and Eh-pH phase diagram. J Southwest Univ Sci Technol 26(01):1–5

    Google Scholar 

  27. Yang J (2015) Biosorption of radionuclide uranium by Deinococcus radiodurans. Spectrosc Spectr Anal 35(004):1010–1014

    CAS  Google Scholar 

  28. Wang M (2011) Effect of pH and ionic strength on U(IV) sorption to oxidized multiwalled carbon nanotubes. J Radioanal Nucl Chem 288(3):895–901

    Article  CAS  Google Scholar 

  29. Yang S (2017) Ion-imprinted mesoporous silica for selective removal of uranium from highly acidic and radioactive effluent. ACS Appl Mater Interfaces 9(34):29337–29344

    Article  CAS  Google Scholar 

  30. Sun Y (2015) Adsorption and desorption of U(VI) on functionalized graphene oxides: a combined experimental and theoretical study. Environ Sci Technol 49(7):4255–4262

    Article  CAS  Google Scholar 

  31. Fan LF, Xie SB, Liu YJ (2016) Adsorption of U(VI) containing wastewater by E. coli with phytic acid. Chin J Environ Eng 8:4167–4171

    Google Scholar 

  32. Xiao FZ (2016) Adsorption behavior and mechanism of uranium (VI) on Deinococcus radiodurans immobilized functionalization magnetic carrier. Chin J Nonferrous Met

  33. Saha D (2016) Non-competitive and competitive adsorption of heavy metals in sulfur-functionalized ordered mesoporous carbon. ACS Appl Mater Interfaces 8(49):34132

    Article  CAS  Google Scholar 

  34. Mckay Y (1999) Pseudo-second order model for sorption processes. Process Biochem 34(5):451–465

    Article  Google Scholar 

  35. Yang C (1998) Statistical mechanical study on the freundlich isotherm equation. J Colloid Interface Sci 208(2):379–387

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Nature Science Foundation of Hunan Province in 2020(2020JJ6050、2020JJ4077).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shuya He or Fangzhu Xiao.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, C., Xie, J., Zhu, Q. et al. The reduction effect and mechanism of Deinococcus radiodurans transformed dsrA gene to uranyl ions. J Radioanal Nucl Chem 330, 1075–1090 (2021). https://doi.org/10.1007/s10967-021-08038-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-021-08038-7

Keywords

Navigation