Skip to main content
Log in

Wet harvesting of no-carrier-added 211At from an irradiated 209Bi target for radiopharmaceutical applications

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Astatine-211 is one of the most promising α-emitters for targeted cancer radiotherapy. However, research and clinical trials involving 211At-labeled radiopharmaceuticals have often been impeded due to the irregular and sometimes inconveniently low recovery yields obtained by the currently used dry distillation procedure. Therefore, a wet harvesting procedure isolating 211At from an irradiated 209Bi target was explored. The procedure involves target dissolution in concentrated HNO3 and extraction of the high oxidation state 211At activity with butyl or isopropyl ether. This method resulted in consistent and nearly quantitative yields. The activity was re-extracted in aqueous phase and applied to NIS6 UVW human glioma cells transfected with cDNA encoding the human sodium/iodide symporter (NIS). The significant and specific uptake of 211At activity by these cells suggests that in the ether phase, high oxidation state 211At is reduced to [211At]astatide anion. The synthesis of the first astatinated organic compound derived from wet harvested 211At, 3-astatobenzoic acid (ABA), was achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Fluck, Gmelin Handbook of Inorganic Chemistry: Astatine, 8th ed., Springer-Verlag, Berlin, 1985.

    Google Scholar 

  2. S. Wilbur, Antibody Immunoconj. Radiopharm., 4 (1991) 85.

    Google Scholar 

  3. L. E. Feinendegen, J. J. McClure, Radiat. Res., 148 (1997) 195.

    Google Scholar 

  4. M. R. Zalutsky, D. D. Bigner, Acta Oncol., 35 (1996) 373.

    Google Scholar 

  5. I. Brown, Adv. Inorg. Chem., 31 (1987) 43.

    Google Scholar 

  6. M. R. Zalutsky, G. Vaidyanathan, Curr. Pharmaceut. Design, 6 (2000) 1433.

    Google Scholar 

  7. S. Wilbur, J. Nucl. Med., 42 (2001) 1516.

    Google Scholar 

  8. M. R. Zalutsky, X.-G. Zhao, K. L. Alston, D. Bigner, J. Nucl. Med., 42 (2001) 1508.

    Google Scholar 

  9. M. R. Zalutsky, in: Handbook of Nuclear Chemistry, Vol. 4, A. Vertes, S. Nagy and Z. Klencsar (Eds), Kluwer Academic Publishers, Dordrecht, 2003, Chapter 9, p. 315.

  10. G. Akabani, S. J. Kennel, M. R. Zalutsky, J. Nucl. Med., 44 (2003) 792.

    Google Scholar 

  11. S. Palm, T. Back, I. Claesson, U. Delle, R. Hultborn, S. Lindegren, L. Jacobsson, Anticancer Res., 23 (2003) 1219.

    Google Scholar 

  12. T. Unak, Appl. Radiation Isotopes, 58 (2003) 115.

    Google Scholar 

  13. T. G. Turkington, M. R. Zalutsky, R. J. Jaszczak, P. Garg, G. Vaidyanathan, R. E. Coleman, Phys. Med. Biol., 38 (1993) 1121.

    Google Scholar 

  14. E. L. Johnson, T. G. Turkington, R. J. Jaszczak, D. R. Gilland, G. Vaidyanathan, K. L. Greer, R. E. Coleman, M. R. Zalutsky, Nucl. Med. Biol., 22 (1995) 45.

    Google Scholar 

  15. R. H. Larsen, B. W. Wieland, M. R. Zalutsky, Appl. Radiation Isotopes, 47 (1996) 135.

    Google Scholar 

  16. U. P. Schwarz, P. Plascjak, M. P. Beitzel, O. A. Gansow, W. C. Eckelman, T. A. Waldmann, Nucl. Med. Biol., 25 (1998) 89.

    Google Scholar 

  17. M. R. Zalutsky, A. S. Narula, Appl. Radiation Isotopes, 38 (1987) 1051.

    Google Scholar 

  18. A. T. Yordanov, K. Garmestani, M. Zhang, Z. Zhang, Z. Yao, K. E. Phillips, B. Herring, E. Horak, M. P. Beitzel, U. P. Schwarz, O. A. Gansow, P. S. Plascjak, W. C. Eckelman, T. A. Waldmann, M. W. Brechbiel, Nucl. Med. Biol., 28 (2001) 845.

    Google Scholar 

  19. M. R. Zalutsky, I. Cokgor, G. Akabani, H. S. Friedman, R. E. Coleman, A. H. Friedman, R. E. McLendon, C. J. Reist, C. N. Pegram, X. G. Zhao, D. D. Bigner, Proc. Am. Assoc. Cancer Res., 41 (2000) 544.

    Google Scholar 

  20. G. Akabani, M. R. Zalutsky, Radiat. Res., 148 (1997) 599.

    Google Scholar 

  21. H. M. Neumann, J. Inorg. Nucl. Chem., 4 (1957) 349.

    Google Scholar 

  22. R. D. Neirinckx, J. A. Smit, Anal. Chim. Acta, 63 (1973) 201.

    Google Scholar 

  23. M. S. Sultana, AQ. Toyoshima, A. Mito, N. Takahashi, H. Baba, H. Watarai, J. Radioanal. Nucl. Chem., 243 (2000) 631.

    Google Scholar 

  24. D. Nayak, S. Lahiri, Radiochim. Acta, 91 (2003) 159.

    Google Scholar 

  25. G.-J. Meyer, K. Roessler, Radiochem. Radioanal. Lett., 25 (1976) 377.

    Google Scholar 

  26. M. Bochvarova, D. K. Tung, I. Dudova, Y. V. Norseev, V. A. Chalkin, Radiokhimya, 14 (1972) 858 (in Russian).

    Google Scholar 

  27. V. Yun-Yui, V. A. Chalkin, Radiokhimya, 6 (2004) 662 (in Russian).

    Google Scholar 

  28. Y. V. Norseev, C. Tao-Nan, V. A. Chalkin, Radiokhimya, 8 (1966) 497 (in Russian).

    Google Scholar 

  29. S. Carlin, R. J. Mairs, P. Welsh, M. Zalutsky, Nucl. Med. Biol., 29 (2002) 729.

    Google Scholar 

  30. S. Carlin, G. Akabani, M. R. Zalutsky, J. Nucl. Med., 44 (2003) 1827.

    Google Scholar 

  31. T. K. Hung, M. Milanov, F. Roesch, V. A. Khalkin, Radiochim. Acta, 47 (1989) 105.

    Google Scholar 

  32. G. W. M. Visser, E. L. Diemer, Radiochim. Acta, 33 (1983) 145.

    Google Scholar 

  33. U. Casellato, P. A. Vigato, M. Vidali, Coord. Chem. Rev., 36 (1981) 183.

    Google Scholar 

  34. A. E. Lemire, A. F. Janzen, K. Marat, Inorg. Chim. Acta, 110 (1985) 237.

    Google Scholar 

  35. J. J. Comor, D. M. Petkovic, J. Serb. Chem. Soc., 66 (2001) 443.

    Google Scholar 

  36. D. Schrotterova, P. Nekovao, Chem. Papers, 53(6) (1999) 412.

    Google Scholar 

  37. A. Cotton, J. Wilkinson, Advanced Inorganic Chemistry, 5th ed., John Wiley & Sons, New York, 1988.

    Google Scholar 

  38. J. Shibata, M. Morikawa, H. Yamamoto, Kagaku Kogaku Ronbunshu, 28 (2002) 339 (in Japanese).

    Google Scholar 

  39. O. Pozzi, M. R. Zalutsky, in preparation.

  40. S. Carlin, A. T. Yordanov, M. R. Zalutsky, unpublished results.

  41. R. H. Larsen, S. Slade, M. R. Zalutsky, Nucl. Med. Biol., 25 (1998) 351.

    Google Scholar 

  42. A. S. Newton, J. Phys. Chem., 61 (1957) 1485.

    Google Scholar 

  43. A. S. Newton, J. Phys. Chem., 61 (1957) 1490.

    Google Scholar 

  44. R. J. Meyer, Gmelin Handbuch der Anorganischen Chemie: Jod, 8 Auflage, Lieferungen 1 und 2, Verlag Chemie GmbH, Berlin, 1931.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. T. Yordanov.

Additional information

This work was supported by Grants EB002980, CA42324 and CA91927 from the U.S. National Institutes of Health. Special thanks go to Michael Dailey and Shawn Murphy from the Duke University Medical Center PET Cyclotron Department for providing us with 211At activities and to Kevin Alston for the preparation of the bismuth targets. NIS cDNA was kindly gifted by Dr. Sissy M. Jhiang from Ohio State University, Columbus, Ohio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yordanov, A.T., Pozzi, O., Carlin, S. et al. Wet harvesting of no-carrier-added 211At from an irradiated 209Bi target for radiopharmaceutical applications. J Radioanal Nucl Chem 262, 593–599 (2005). https://doi.org/10.1007/s10967-005-0481-7

Download citation

  • Received:

  • Issue date:

  • DOI: https://doi.org/10.1007/s10967-005-0481-7

Keywords