Skip to main content
Log in

Examination of Electric Field Effects on Tissues by Using Back Propagation Neural Network

  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

An Erratum to this article was published on 06 August 2008

Abstract

The aim of this study is to determine lipid peroxidation and antioxidant enzyme levels in spleen and testis tissues of guinea pigs which were exposed to different intensities and periods of DC (direct current) and AC (alternating current) electric fields. The experimental results are applied to neural networks as learning data and the training of the feed forward neural network is realized. At the end of this training; without applying electric field to the tissues, the determination of the effects of the electric field on tissues by using computer is predicted by the neural network. After the experiments, the prediction of the neural network is averagely 99%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barriviera, M. L., Louro, S. R. W., Wajnberg, E., and Hasson-Voloch, A., Denervation alters protein-lipid interactions in membrane fractions from electrocytes of Electrophorus electrius (L.). Biophys. Chem. 91:93–104, 2001.

    Article  PubMed  Google Scholar 

  2. Benov, L. C., Antonov, P. A., and Ribarov, S. R., Oxidative damage the membrane lipids after electroporation. Gen. Physiol. Biophys. 13:85–97, 1994.

    PubMed  Google Scholar 

  3. Güler, G., Seyhan Atalay, N., Özoğul, C., and Erdoğan, D., Biochemical and structural approach to collagen synthesis under electric fields. Gen. Physiol. Biophys. 15:429–440, 1996.

    PubMed  Google Scholar 

  4. Irmak, M. K., Fadillioğlu, E., Güleç, M., Erdoğan, H., Yağmurcu, M., and Akyol, Ö., Effects of electromagnetic radiation from a cellular telephone on the oxidant and antioxidant levels in rabbits. Cell Biochem. Funct. 20:1–5, 2002.

    Article  PubMed  Google Scholar 

  5. Wright, I. A., and Gough, N. A. J., Artificial neural network analysis of common femoral artery Doppler shift signals: Classification of proximal disease. Ultrasound Med. Biol. 24:735, 1999.

    Article  Google Scholar 

  6. Beale, R., and Jackson, T., Neural Computing: An Introduction, Institute of Physics Publishing, Bristol, UK, 1990.

    Google Scholar 

  7. Fredric, M. H., and Inica, K., Principles of Neurocomputing for Science and Engineering, McGraw-Hill, New York, 2001.

    Google Scholar 

  8. McClelland, J. L., and Rumelhart, D. E., Explorations in Parallel Distributed Processing: A Handbook of Models, Programs and Exercises, Cambridge, 1986.

  9. Ebeigbe, A. B., Gantzos, R. D., and Webb, R. C., Relaxation of rat tail artery to electrical stimulation. Life Sci. 33:303–309, 1983.

    Google Scholar 

  10. Lamb, F. S., and Webb, R. C., Vascular effects of free radicals generated by electrical stimulation. Am. J. Physiol. 247:H709–H714, 1984.

    PubMed  Google Scholar 

  11. Sanguinetti, C. M., Oxidant/antioxidant imbalance: Role in the pathogenesis of COPD. Respiration 59:20–23, 1992.

    PubMed  Google Scholar 

  12. Gutteridge, J. M. C., Lipid peroxidation and antioxidants as biomarkers of tissue damage. Clin. Chem. 41:1819–1828, 1995.

    PubMed  Google Scholar 

  13. Maccall, J. M., Braughler, J. M. and Hall, E. D., Lipid peroxidation and the role of oxygen radicals in CNS injury. Acta. Anaesthesiologica Belgica 38:373–379, 1987.

    PubMed  Google Scholar 

  14. Wasowics, W., Neve, S., and Peretz, A., Optimized steps in fluorometric determination of thiobarbituric acid reactive substances in serum: importance of extraction pH and influence of sample preservation and storage. Clin. Chem. 39:2522–2526, 1993.

    PubMed  Google Scholar 

  15. Desideri, A., Falconi, M., Polticelli, F., Bolognesi, M., Djnovic, K., and Rotilio, G., Evolutionary conservativeness of electric field in the Cu,Zn superoxide dismutase active site, Evidence for co-ordinated mutation of charged amino acid residues. J. Mol. Biol. 223:337–342, 1992.

    Article  PubMed  Google Scholar 

  16. Osman, R., Effect of local environment and protein on the mechanism of action of superoxide dismutase. Enzyme 36:32–42, 1986.

    PubMed  Google Scholar 

  17. Salo, D. C., Pacifici, R. E., Lin, S. W., Giulivi, C., and Davies, K. J. A., Superoxide dismutase undergoes proteolysis and fragmentation following oxidative modification and inactivation. J. Biol. Chem. 265:1919–1927, 1990.

    PubMed  Google Scholar 

  18. Scaiano, J. C., Mohtat, N., Cozens, F. L., Mclean, J., and Thansandote, A., Application of the radical pair mechanism to free radicals in organized systems: Can the effects of 60 Hz br predicted from studies under static fields? Bioelectromagnetics 5:549–554, 1994.

    Google Scholar 

  19. Lowry, O. H., Rosebrough, N. I., Farr, A. L., and Randall, R. J., Protein measurement with the folin phenol reagent. J. Biol. Chem. 193:265–275, 1951.

    PubMed  Google Scholar 

  20. Sun, Y., Oberley, L. W., and Li, Y., A simple method for clinical assay of superoxide dismutase. Clin. Chem. 34:497–500, 1988.

    PubMed  Google Scholar 

  21. Cozen, F. L., and Scaiano, J. C., A compatative study of magnetic field effects on the dynamics of geminate and random radical pair processes in micelles. J. Am. Chem. Soc. 115:5204–5211, 1993.

    Article  Google Scholar 

  22. Romodanova, E. A., Paranich, A. V., and Chaikina, L. A., Effect of chronic effect of the electrostatic field on various biochemical indicators of tissues. Fiziol. Zh. 36:30–34, 1990.

    Google Scholar 

  23. Blank, M., Electromagnetic Fields, Biological Interactions and Mechanisms, Advances in Chemistry Series 250, Washington, 1995.

  24. Margonato, V., Veicsteinas, A., Conti, R., Nicolini, P., and Cerretelli, P., Biologic effects of prolonged exposure to ELF electrmagnetic fields in rats I. 50 Hz electric fields. Bioelectromagnetics 14:479–493, 1993.

    PubMed  Google Scholar 

  25. Marino, A. A., Berger, T. J., Mitchell, J. T., Duhacek, B. A., and Becker, R., Electric field effects in selected biologic systems. Ann. N. Y. Acad. Sci. 405:436–444, 1983.

    Google Scholar 

  26. Marino, A. A., Morris, D. M., and Arnold, T., Electrical treatment of lewis lung carcinoma in mice. J. Surg. Res. 41:198–201, 1986.

    Article  PubMed  Google Scholar 

  27. Rodan, G., Bourret, L. A., and Norton, L. A., DNA synthesis in cartilage cells is stimulated by oscillating electric fields. Science 199:690–692, 1978.

    PubMed  Google Scholar 

  28. Güler, G., and Seyhan Atalay, N., Functional enzymes of liver, total blood protein and albumin levels under electric fields, medical & biological engineering & computing. World Congress on Medical Physics and Biomedical Engineering, Suppl. 1, pp. 45, Nice, September 14–19, 1997.

  29. Güler, G. and Seyhan Atalay, N., Changes in hydroxyproline levels in electric field tissue interaction. Indian J. Biochem. Bio. 33:531–533, 1996.

    Google Scholar 

  30. Güler, G. and Seyhan Atalay, N., The effect of vertical and horizontal electric fields on collagen synthesis, progress in biophysics & molecular biology, XIIth International Biophysics Congress, 65 Suppl.1, p. 215, Amsterdam, 11–16 August, 1996.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fırat Hardalaç.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s10916-008-9189-x.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Güler, G., Hardalaç, F. & Arıcıoğlu, A. Examination of Electric Field Effects on Tissues by Using Back Propagation Neural Network. J Med Syst 29, 679–708 (2005). https://doi.org/10.1007/s10916-005-6356-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10916-005-6356-1

Keywords

Navigation