Skip to main content

Advertisement

Log in

Wnt5a as an Effector of TGFβ in Mammary Development and Cancer

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

Wnt5a is a member of the Wingless-related/MMTV-integration family of secreted growth factors, which are involved in a wide range of cellular processes. Wnt signaling can be broadly divided into two categories the canonical, ß-catenin-dependent pathway and the non-canonical ß-catenin-independent pathway. Wnt5a is a non-canonical signaling member of the Wnt family. Loss of Wnt5a is associated with early relapse of invasive breast cancer, increased metastasis, and poor survival in humans. It has been shown that TGF-ß directly regulates expression of Wnt5a in mammary gland and that Wnt5a mediates the effects of TGF-ß on branching during mammary gland development. Here we review the evidence suggesting Wnt5a acts as an effector of TGF-ß actions in breast cancer. It is suggested that the tumor suppressive functions of TGF-ß involve Wnt5a-mediated antagonism of Wnt/ß-catenin signaling and limiting the stem cell population. Interactions between TGF-ß and Wnt5a in metastasis appear to be more complex, and may depend on specific cues from the microenvironment as well as activation of specific intracellular signaling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

Abbreviations

Ddr1:

Discoidin Domain Receptor 1

DNIIR:

dominant-negative mutation of Tgfbr2

Dsh:

Dishelleved

GSK-3ß:

Glycogen Synthase Kinase-3ß

HGF:

Hepatocyte Growth Factor

JNK:

c-Jun N-terminal kinase

LEF/TCF:

Lymphoid Enhancer Factor/T-Cell-Specific Transcription Factor

MaSCs:

mammary stem cells

MMP:

Matrix Metalloproteinases

PKC:

Phospho Kinase C

Ror2:

receptor tyrosine kinase-like orphan receptor 2

TEBs:

terminal end buds

TGF-ß:

Transforming Growth Factor -beta

Tgfbr1:

TGF-ß receptor type I

Tgfbr2:

TGF-ß receptor type II

Wnt5a:

Wingless-related MMTV Integration Site 5A

References

  1. Roberts AB, Sporn MB. The transforming growth factor-bs. In: Sporn MB, Roberts AB, editors. Peptide growth factors and their receptors. Heidelberg: Springer; 1990. p. 419–72.

    Google Scholar 

  2. Massague J. TGF-ß signal transduction. Annu Rev Biochem. 1998;67:753–91.

    Article  PubMed  CAS  Google Scholar 

  3. Hogan BLM. Bone morphogenetic proteins: multifunctional regulators of vertebrate development. Genes Dev. 1996;10:1580–94.

    Article  PubMed  CAS  Google Scholar 

  4. Kingsley DM. The TGF-b superfamily: new members, new receptors, and new genetic tests of function in different organisms. Genes Dev. 1994;8:133–46.

    Article  PubMed  CAS  Google Scholar 

  5. Serra R, Crowley MR. TGF-beta in mammary gland development and breast cancer. Breast Dis. 2003;18:61–73.

    PubMed  CAS  Google Scholar 

  6. Serra R, Crowley MR. Mouse models of transforming growth factor beta impact in breast development and cancer. Endocr Relat Cancer. 2005;12(4):749–60.

    Article  PubMed  CAS  Google Scholar 

  7. Ewan KB, Shyamala G, Ravani SA, Tang Y, Akhurst R, Wakefield L, et al. Latent transforming growth factor-beta activation in mammary gland: regulation by ovarian hormones affects ductal and alveolar proliferation. Am J Pathol. 2002;160(6):2081–93.

    Article  PubMed  CAS  Google Scholar 

  8. Robinson SD, Silberstein GB, Roberts AB, Flanders KC, Daniel CW. Regulated expression and growth inhibitory effects of transforming growth factor-b isoforms in mouse mammary gland development. Development. 1991;113:867–78.

    PubMed  CAS  Google Scholar 

  9. Strange R, Li F, Saurer S, Burkhardt A, Friis RR. Apoptotic cell death and tissue remodelling during mouse mammary gland involution. Development. 1992;115:49–58.

    PubMed  CAS  Google Scholar 

  10. Nguyen AV, Pollard JW. Transforming growth factor beta3 induces cell death during the first stage of mammary gland involution. Development. 2000;127(14):3107–18.

    PubMed  CAS  Google Scholar 

  11. Joseph H, Gorska A, Sohn P, Moses HL, Serra R. Overexpression of a kinase-defiecient transforming growth factor-ß type II receptor in mouse mammary stroma results in increased epithelial branching. Mol Biol Cell. 1999;10:1221–34.

    PubMed  CAS  Google Scholar 

  12. Boulanger CA, Smith GH. Reducing mammary cancer risk through premature stem cell senescence. Oncogene. 2001;20(18):2264–72.

    Article  PubMed  CAS  Google Scholar 

  13. Boulanger CA, Wagner KU, Smith GH. Parity-induced mouse mammary epithelial cells are pluripotent, self-renewing and sensitive to TGF-beta1 expression. Oncogene. 2005;24(4):552–60.

    Article  PubMed  CAS  Google Scholar 

  14. Kordon EC, McKnight RA, Jhappan C, Hennighausen L, Merlino G, Smith GH. Ectopic TGF[beta]1 expression in the secretory mammary epithelium induces early senescence of the epithelial stem cell population. Dev Biol. 1995;168(1):47–61.

    Article  PubMed  CAS  Google Scholar 

  15. Baxley S, Serra R. Inhibiting breast cancer progression by exploiting TGF signaling. Curr Drug Targets. 2010;11:1089–102.

    Article  PubMed  CAS  Google Scholar 

  16. Crowley MR, Bowtell D, Serra R. TGF-beta, c-Cbl, and PDGFR-alpha in the mammary stroma. Dev Biol. 2005;279(1):58–72.

    Article  PubMed  CAS  Google Scholar 

  17. Gorska AE, Joseph H, Derynck R, Moses HL, Serra R. Dominant-negative interference of the transforming growth factor beta type II receptor in mammary epithelium results in alveolar hyperplasia and differentiation in virgin mice. Cell Growth Differ. 1998;9:229–38.

    PubMed  CAS  Google Scholar 

  18. Roarty K, Serra R. Wnt5a is required for proper mammary gland development and TGF-{beta}-mediated inhibition of ductal growth. Development. 2007;134(21):3929–39.

    Article  PubMed  CAS  Google Scholar 

  19. Katoh M. Transcriptional mechanisms of WNT5A based on NF-kappaB, Hedgehog, TGFbeta, and Notch signaling cascades. Int J Mol Med. 2009;23(6):763–9.

    Article  PubMed  CAS  Google Scholar 

  20. Dejmek J, Leandersson K, Manjer J, Bjartell A, Emdin SO, Vogel WF, et al. Expression and signaling activity of Wnt-5a/Discoidin domain receptor-1 and syk plays distinct but decisive roles in breast cancer patient survival. Clin Cancer Res. 2005;11(2):520–8.

    PubMed  CAS  Google Scholar 

  21. Jonsson M, Dejmek J, Bendahl Pr-O, Andersson T. Loss of Wnt-5a Protein Is Associated with Early Relapse in Invasive Ductal Breast Carcinomas. Cancer Res. 2002;62(2):409–16.

    PubMed  CAS  Google Scholar 

  22. Leris ACA, Roberts TR, Jiang WG, Newbold RF, Mokbel K. WNT5A Expression in Human Breast Cancer. Anticancer Research. 2005;25(2A):731–4.

    PubMed  CAS  Google Scholar 

  23. Gavin BJ, McMahon AP. Differential regulation of the Wnt gene family during pregnancy and lactation suggests a role in postnatal development of the mammary gland. Mol Cell Biol. 1992;12(5):2418–23.

    PubMed  CAS  Google Scholar 

  24. Weber-Hall SJ, Phippard DJ, Niemeyer CC, Dale TC. Developmental and hormonal regulation of Wnt gene expression in the mouse mammary gland. Differentiation. 1994;57(3):205–14.

    Article  PubMed  CAS  Google Scholar 

  25. Chu EY, Hens J, Andl T, Kairo A, Yamaguchi TP, Brisken C, et al. Canonical WNT signaling promotes mammary placode development and is essential for initiation of mammary gland morphogenesis. Development. 2004;131(19):4819–29.

    Article  PubMed  CAS  Google Scholar 

  26. Kouros-Mehr H, Werb Z. Candidate regulators of mammary branching morphogenesis identified by genome-wide transcript analysis. Dev Dyn. 2006;235(12):3404–12.

    Article  PubMed  CAS  Google Scholar 

  27. Veeman MT, Axelrod JD, Moon RT. A second canon. Functions and mechanisms of beta-catenin-independent Wnt signaling. Dev Cell. 2003;5(3):367–77.

    Article  PubMed  CAS  Google Scholar 

  28. Kikuchi A, Kishida S, Yamamoto H. Regulation of Wnt signaling by protein-protein interaction and post-translational modifications. Exp Mol Med. 2006;38(1):1–10.

    PubMed  CAS  Google Scholar 

  29. Katoh M. WNT/PCP signaling pathway and human cancer (review). Oncol Rep. 2005;14(6):1583–8.

    PubMed  CAS  Google Scholar 

  30. Brennan KR, Brown AM. Wnt proteins in mammary development and cancer. J Mammary Gland Biol Neoplasia. 2004;9(2):119–31.

    Article  PubMed  Google Scholar 

  31. Widelitz R. Wnt signaling through canonical and non-canonical pathways: recent progress. Growth Factors. 2005;23(2):111–6.

    Article  PubMed  CAS  Google Scholar 

  32. Kuhl M, Sheldahl LC, Park M, Miller JR, Moon RT. The Wnt/Ca2+ pathway: a new vertebrate Wnt signaling pathway takes shape. Trends Genet. 2000;16(7):279–83.

    Article  PubMed  CAS  Google Scholar 

  33. Kuhl M. The WNT/calcium pathway: biochemical mediators, tools and future requirements. Front Biosci. 2004;9:967–74.

    Article  PubMed  Google Scholar 

  34. Kohn AD, Moon RT. Wnt and calcium signaling: beta-catenin-independent pathways. Cell Calcium. 2005;38(3–4):439–46.

    Article  PubMed  CAS  Google Scholar 

  35. Westfall TA, Brimeyer R, Twedt J, Gladon J, Olberding A, Furutani-Seiki M, et al. Wnt-5/pipetail functions in vertebrate axis formation as a negative regulator of Wnt/beta-catenin activity. J Cell Biol. 2003;162(5):889–98.

    Article  PubMed  CAS  Google Scholar 

  36. Topol L, Jiang X, Choi H, Garrett-Beal L, Carolan PJ, Yang Y. Wnt-5a inhibits the canonical Wnt pathway by promoting GSK-3-independent beta-catenin degradation. J Cell Biol. 2003;162(5):899–908.

    Article  PubMed  CAS  Google Scholar 

  37. Mikels AJ, Nusse R. Purified Wnt5a protein activates or inhibits beta-catenin-TCF signaling depending on receptor context. PLoS Biol. 2006;4(4):e115.

    Article  PubMed  CAS  Google Scholar 

  38. Oishi I, Suzuki H, Onishi N, Takada R, Kani S, Ohkawara B, et al. The receptor tyrosine kinase Ror2 is involved in non-canonical Wnt5a/JNK signalling pathway. Genes Cells. 2003;8(7):645–54.

    Article  PubMed  CAS  Google Scholar 

  39. Safholm A, Leandersson K, Dejmek J, Nielsen CK, Villoutreix BO, Andersson T. A formylated hexapeptide ligand mimics the ability of Wnt-5a to impair migration of human breast epithelial cells. J Biol Chem. 2006;281(5):2740–9.

    Article  PubMed  CAS  Google Scholar 

  40. Huang L, Pu Y, Hu WY, Birch L, Luccio-Camelo D, Yamaguchi T, et al. The role of Wnt5a in prostate gland development. Dev Biol. 2009;328(2):188–99.

    Article  PubMed  CAS  Google Scholar 

  41. Allgeier SH, Lin TM, Vezina CM, Moore RW, Fritz WA, Chiu SY, et al. WNT5A selectively inhibits mouse ventral prostate development. Dev Biol. 2008;324(1):10–7.

    Article  PubMed  CAS  Google Scholar 

  42. Imagawa W, Yang J, Guzman R, Satybrata N. Control of mammary gland development. In: Knobil E, Neil JD, editors. The physiology of reproduction. 2nd ed. New York: Raven; 1994. p. 1033–63.

    Google Scholar 

  43. Hennighausen L, Robinson GW. Signaling pathways in mammary gland development. Dev Cell. 2001;1(4):467–75.

    Article  PubMed  CAS  Google Scholar 

  44. Silberstein GB. Postnatal mammary gland morphogenesis. Microsc Res Tech. 2001;52(2):155–62.

    Article  PubMed  CAS  Google Scholar 

  45. DeOme KB, Faulkin LJ, Bern HA, Blair PB. Development of mammary tumors from hyperplastic alveolar nodules transplanted into gland-free mammary fat pads of female C3H mice. Cancer Res. 1959;19(5):515.

    PubMed  CAS  Google Scholar 

  46. Daniel CW, De Ome KB, Young JT, Blair PB, Faulkin LJ. The in vivo life span of normal and preneoplastic mouse mammary glands: a serial transplantation study. Proc Natl Acad Sci USA. 1968;61(1):53–60.

    Article  PubMed  CAS  Google Scholar 

  47. Kordon EC, Smith GH. An entire functional mammary gland may comprise the progeny from a single cell. Development. 1998;125(10):1921–30.

    PubMed  CAS  Google Scholar 

  48. Shackleton M, Vaillant Fo, Simpson KJ, Stingl J, Smyth GK, Asselin-Labat M-L, et al. Generation of a functional mammary gland from a single stem cell. Nature. 2006;439(7072):84–8.

    Article  PubMed  CAS  Google Scholar 

  49. Stingl J, Eirew P, Ricketson I, Shackleton M, Vaillant F, Choi D, et al. Purification and unique properties of mammary epithelial stem cells. Nature. 2006;439(7079):993–7.

    PubMed  CAS  Google Scholar 

  50. Stingl J. Detection and analysis of mammary gland stem cells. J Pathol. 2009;217(2):229–41.

    Article  PubMed  CAS  Google Scholar 

  51. Visvader JE, Smith GH. Murine mammary epithelial stem cells: discovery, function, and current status. Cold Spring Harbor Perspectives in Biology 2010.

  52. Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997;3(7):730–7.

    Article  PubMed  CAS  Google Scholar 

  53. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA. 2003;100(7):3983–8.

    Article  PubMed  CAS  Google Scholar 

  54. Alonso L, Fuchs E. Stem cells in the skin: waste not, Wnt not. Genes Dev. 2003;17(10):1189–200.

    Article  PubMed  CAS  Google Scholar 

  55. Korinek V, Barker N, Moerer P, van Donselaar E, Huls G, Peters PJ, et al. Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4. Nat Genet. 1998;19(4):379–83.

    Article  PubMed  CAS  Google Scholar 

  56. Reya T, Duncan AW, Ailles L, Domen J, Scherer DC, Willert K, et al. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature. 2003;423(6938):409–14.

    Article  PubMed  CAS  Google Scholar 

  57. Badders NM, Goel S, Clark RJ, Klos KS, Kim S, Bafico A, et al. The Wnt receptor, Lrp5, is expressed by mouse mammary stem cells and is required to maintain the basal lineage. PLoS ONE. 2009;4(8):e6594.

    Article  PubMed  CAS  Google Scholar 

  58. Brisken C, Heineman A, Chavarria T, Elenbaas B, Tan J, Dey SK, et al. Essential function of Wnt-4 in mammary gland development downstream of progesterone signaling. Genes Dev. 2000;14(6):650–4.

    PubMed  CAS  Google Scholar 

  59. Brisken C, Park S, Vass T, Lydon JP, O’Malley BW, Weinberg RA. A paracrine role for the epithelial progesterone receptor in mammary gland development. Proc Natl Acad Sci USA. 1998;95(9):5076–81.

    Article  PubMed  CAS  Google Scholar 

  60. Joshi PA, Jackson HW, Beristain AG, Di Grappa MA, Mote PA, Clarke CL, et al. Progesterone induces adult mammary stem cell expansion. Nature. 2010;465(7299):803–7.

    Article  PubMed  CAS  Google Scholar 

  61. Tepera SB, McCrea PD, Rosen JM. A beta-catenin survival signal is required for normal lobular development in the mammary gland. J Cell Sci. 2003;116(Pt 6):1137–49.

    Article  PubMed  CAS  Google Scholar 

  62. Zeng YA, Nusse R. Wnt proteins are self-renewal factors for mammary stem cells and promote their long-term expansion in culture. Cell Stem Cell. 2010;6(6):568–77.

    Article  PubMed  CAS  Google Scholar 

  63. Liu BY, McDermott SP, Khwaja SS, Alexander CM. The transforming activity of Wnt effectors correlates with their ability to induce the accumulation of mammary progenitor cells. Proc Natl Acad Sci USA. 2004;101(12):4158–63.

    Article  PubMed  CAS  Google Scholar 

  64. Li Y, Welm B, Podsypanina K, Huang S, Chamorro M, Zhang X, et al. Evidence that transgenes encoding components of the Wnt signaling pathway preferentially induce mammary cancers from progenitor cells. Proc Natl Acad Sci USA. 2003;100(26):15853–8.

    Article  PubMed  CAS  Google Scholar 

  65. Rosner A, Miyoshi K, Landesman-Bollag E, Xu X, Seldin DC, Moser AR, et al. Pathway pathology: histological differences between ErbB/Ras and Wnt pathway transgenic mammary tumors. Am J Pathol. 2002;161(3):1087–97.

    Article  PubMed  CAS  Google Scholar 

  66. Cho RW, Wang X, Diehn M, Shedden K, Chen GY, Sherlock G, et al. Isolation and molecular characterization of cancer stem cells in MMTV-Wnt-1 murine breast tumors. Stem Cells. 2008;26(2):364–71.

    Article  PubMed  CAS  Google Scholar 

  67. Welm BE, Tepera SB, Venezia T, Graubert TA, Rosen JM, Goodell MA. Sca-1(pos) cells in the mouse mammary gland represent an enriched progenitor cell population. Dev Biol. 2002;245(1):42–56.

    Article  PubMed  CAS  Google Scholar 

  68. Sleeman KE, Kendrick H, Robertson D, Isacke CM, Ashworth A, Smalley MJ. Dissociation of estrogen receptor expression and in vivo stem cell activity in the mammary gland. J Cell Biol. 2007;176(1):19–26.

    Article  PubMed  CAS  Google Scholar 

  69. Roarty K, Baxley SE, Crowley MR, Frost AR, Serra R. Loss of TGF-beta or Wnt5a results in an increase in Wnt/beta-catenin activity and redirects mammary tumour phenotype. Breast Cancer Res. 2009;11(2):R19.

    Article  PubMed  CAS  Google Scholar 

  70. Tang B, Yoo N, Vu M, Mamura M, Nam JS, Ooshima A, et al. Transforming growth factor-beta can suppress tumorigenesis through effects on the putative cancer stem or early progenitor cell and committed progeny in a breast cancer xenograft model. Cancer Res. 2007;67(18):8643–52.

    Article  PubMed  CAS  Google Scholar 

  71. Shipitsin M, Campbell LL, Argani P, Weremowicz S, Bloushtain-Qimron N, Yao J, et al. Molecular definition of breast tumor heterogeneity. Cancer Cell. 2007;11(3):259–73.

    Article  PubMed  CAS  Google Scholar 

  72. Benhaj K, Akcali KC, Ozturk M. Redundant expression of canonical Wnt ligands in human breast cancer cell lines. Oncol Rep. 2006;15(3):701–7.

    PubMed  CAS  Google Scholar 

  73. Jonsson M, Andersson T. Repression of Wnt-5a impairs DDR1 phosphorylation and modifies adhesion and migration of mammary cells. J Cell Sci. 2001;114(Pt 11):2043–53.

    PubMed  CAS  Google Scholar 

  74. Kremenevskaja N, von Wasielewski R, Rao AS, Schofl C, Andersson T, Brabant G. Wnt-5a has tumor suppressor activity in thyroid carcinoma. Oncogene. 2005;24(13):2144–54.

    Article  PubMed  CAS  Google Scholar 

  75. Olson DJ, Gibo DM. Antisense wnt-5a mimics wnt-1-mediated C57MG mammary epithelial cell transformation. Exp Cell Res. 1998;241(1):134–41.

    Article  PubMed  CAS  Google Scholar 

  76. Olson DJ, Gibo DM, Saggers G, Debinski W, Kumar R. Reversion of uroepithelial cell tumorigenesis by the ectopic expression of human wnt-5a. Cell Growth Differ. 1997;8(4):417–23.

    PubMed  CAS  Google Scholar 

  77. Yamaguchi TP, Bradley A, McMahon AP, Jones S. A Wnt5a pathway underlies outgrowth of multiple structures in the vertebrate embryo. Development. 1999;126(6):1211–23.

    PubMed  CAS  Google Scholar 

  78. Teissedre B, Pinderhughes A, Incassati A, Hatsell SJ, Hiremath M, Cowin P. MMTV-Wnt1 and -DeltaN89beta-catenin induce canonical signaling in distinct progenitors and differentially activate Hedgehog signaling within mammary tumors. PLoS ONE. 2009;4(2):e4537.

    Article  PubMed  CAS  Google Scholar 

  79. Li Y, Hively WP, Varmus HE. Use of MMTV-Wnt-1 transgenic mice for studying the genetic basis of breast cancer. Oncogene. 2000;19(8):1002–9.

    Article  PubMed  CAS  Google Scholar 

  80. Miller JR, Moon RT. Signal transduction through beta-catenin and specification of cell fate during embryogenesis. Genes Dev. 1996;10(20):2527–39.

    Article  PubMed  CAS  Google Scholar 

  81. Ishitani T, Kishida S, Hyodo-Miura J, Ueno N, Yasuda J, Waterman M, et al. The TAK1-NLK mitogen-activated protein kinase cascade functions in the Wnt-5a/Ca2+ pathway to antagonize Wnt/{beta}-catenin signaling. Mol Cell Biol. 2003;23(1):131–9.

    Article  PubMed  CAS  Google Scholar 

  82. Huguet EL, Smith K, Bicknell R, Harris AL. Regulation of Wnt5a mRNA expression in human mammary epithelial cells by cell shape, confluence, and hepatocyte growth factor. J Biol Chem. 1995;270:12851–6.

    Article  PubMed  CAS  Google Scholar 

  83. Bui TD, Tortora G, Ciardiello F, Harris AL. Expression of Wnt5a is downregulated by extracellular matrix and mutated c-Ha-ras in the human mammary epithelial cell line MCF-10A. Biochem Biophys Res Commun. 1997;239(3):911–7.

    Article  PubMed  CAS  Google Scholar 

  84. Naylor MJ, Ormandy CJ. Mouse strain-specific patterns of mammary epithelial ductal side branching are elicited by stromal factors. Dev Dyn. 2002;225(1):100–5.

    Article  PubMed  CAS  Google Scholar 

  85. Shrivastava A, Radziejewski C, Campbell E, Kovac L, McGlynn M, Ryan TE, et al. An orphan receptor tyrosine kinase family whose members serve as nonintegrin collagen receptors. Mol Cell. 1997;1(1):25–34.

    Article  PubMed  CAS  Google Scholar 

  86. Vogel W, Gish GD, Alves F, Pawson T. The discoidin domain receptor tyrosine kinases are activated by collagen. Mol Cell. 1997;1(1):13–23.

    Article  PubMed  CAS  Google Scholar 

  87. Vogel W. Discoidin domain receptors: structural relations and functional implications. FASEB J. 1999;13(Suppl):S77–82.

    PubMed  CAS  Google Scholar 

  88. Vogel W, Brakebusch C, Fassler R, Alves F, Ruggiero F, Pawson T. Discoidin domain receptor 1 is activated independently of beta(1) integrin. J Biol Chem. 2000;275(8):5779–84.

    Article  PubMed  CAS  Google Scholar 

  89. Barker KT, Martindale JE, Mitchell PJ, Kamalati T, Page MJ, Phippard DJ, et al. Expression patterns of the novel receptor-like tyrosine kinase, DDR, in human breast tumours. Oncogene. 1995;10(3):569–75.

    PubMed  CAS  Google Scholar 

  90. Dejmek J, Dib K, Jonsson M, Andersson T. Wnt-5a and G-protein signaling are required for collagen-induced DDR1 receptor activation and normal mammary cell adhesion. Int J Cancer. 2003;103(3):344–51.

    Article  PubMed  CAS  Google Scholar 

  91. Hansen C, Howlin J, Tengholm A, Dyachok O, Vogel WF, Nairn AC, et al. Wnt-5a-induced phosphorylation of DARPP-32 inhibits breast cancer cell migration in a CREB-dependent manner. J Biol Chem. 2009;284(40):27533–43.

    Article  PubMed  CAS  Google Scholar 

  92. Safholm A, Tuomela J, Rosenkvist J, Dejmek J, Harkonen P, Andersson T. The Wnt-5a-derived hexapeptide Foxy-5 inhibits breast cancer metastasis in vivo by targeting cell motility. Clin Cancer Res. 2008;14(20):6556–63.

    Article  PubMed  CAS  Google Scholar 

  93. Ford CE, Ekstrom EJ, Howlin J, Andersson T. The WNT-5a derived peptide, Foxy-5, possesses dual properties that impair progression of ERalpha negative breast cancer. Cell Cycle. 2009;8(12):1838–42.

    Article  PubMed  CAS  Google Scholar 

  94. Dejmek J, Dejmek A, Safholm A, Sjolander A, Andersson T. Wnt-5a protein expression in primary dukes B colon cancers identifies a subgroup of patients with good prognosis. Cancer Res. 2005;65(20):9142–6.

    Article  PubMed  CAS  Google Scholar 

  95. McDonald SL, Silver A. The opposing roles of Wnt-5a in cancer. Br J Cancer. 2009;101(2):209–14.

    Article  PubMed  CAS  Google Scholar 

  96. Weeraratna AT, Jiang Y, Hostetter G, Rosenblatt K, Duray P, Bittner M, et al. Wnt5a signaling directly affects cell motility and invasion of metastatic melanoma. Cancer Cell. 2002;1(3):279–88.

    Article  PubMed  CAS  Google Scholar 

  97. Dissanayake SK, Wade M, Johnson CE, O’Connell MP, Leotlela PD, French AD, et al. The Wnt5A/protein kinase C pathway mediates motility in melanoma cells via the inhibition of metastasis suppressors and initiation of an epithelial to mesenchymal transition. J Biol Chem. 2007;282(23):17259–71.

    Article  PubMed  CAS  Google Scholar 

  98. O’Connell MP, Fiori JL, Xu M, Carter AD, Frank BP, Camilli TC, et al. The orphan tyrosine kinase receptor, ROR2, mediates Wnt5A signaling in metastatic melanoma. Oncogene. 2010;29(1):34–44.

    Article  PubMed  CAS  Google Scholar 

  99. Jenei V, Sherwood V, Howlin J, Linnskog R, Safholm A, Axelsson L, et al. A t-butyloxycarbonyl-modified Wnt5a-derived hexapeptide functions as a potent antagonist of Wnt5a-dependent melanoma cell invasion. Proc Natl Acad Sci USA. 2009;106(46):19473–8.

    Article  PubMed  CAS  Google Scholar 

  100. Nishita M, Enomoto M, Yamagata K, Minami Y. Cell/tissue-tropic functions of Wnt5a signaling in normal and cancer cells. Trends Cell Biol. 2010;20(6):346–54.

    Article  PubMed  CAS  Google Scholar 

  101. Enomoto M, Hayakawa S, Itsukushima S, Ren DY, Matsuo M, Tamada K, et al. Autonomous regulation of osteosarcoma cell invasiveness by Wnt5a/Ror2 signaling. Oncogene. 2009;28(36):3197–208.

    Article  PubMed  CAS  Google Scholar 

  102. Slaton JW, Inoue K, Perrotte P, El-Naggar AK, Swanson DA, Fidler IJ, et al. Expression levels of genes that regulate metastasis and angiogenesis correlate with advanced pathological stage of renal cell carcinoma. Am J Pathol. 2001;158(2):735–43.

    Article  PubMed  CAS  Google Scholar 

  103. Yamamoto H, Oue N, Sato A, Hasegawa Y, Matsubara A, Yasui W, et al. Wnt5a signaling is involved in the aggressiveness of prostate cancer and expression of metalloproteinase. Oncogene. 2010;29(14):2036–46.

    Article  PubMed  CAS  Google Scholar 

  104. Westermarck J, Kahari VM. Regulation of matrix metalloproteinase expression in tumor invasion. FASEB J. 1999;13(8):781–92.

    PubMed  CAS  Google Scholar 

  105. Pukrop T, Klemm F, Hagemann T, Gradl D, Schulz M, Siemes S, et al. Wnt 5a signaling is critical for macrophage-induced invasion of breast cancer cell lines. Proc Natl Acad Sci USA. 2006;103(14):5454–9.

    Article  PubMed  CAS  Google Scholar 

  106. Condeelis J, Pollard JW. Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell. 2006;124(2):263–6.

    Article  PubMed  CAS  Google Scholar 

  107. Bierie B, Moses HL. Gain or loss of TGFbeta signaling in mammary carcinoma cells can promote metastasis. Cell Cycle. 2009;8(20):3319–27.

    Article  PubMed  CAS  Google Scholar 

  108. Forrester E, Chytil A, Bierie B, Aakre M, Gorska AE, Sharif-Afshar AR, et al. Effect of conditional knockout of the type II TGF-beta receptor gene in mammary epithelia on mammary gland development and polyomavirus middle T antigen induced tumor formation and metastasis. Cancer Res. 2005;65(6):2296–302.

    Article  PubMed  CAS  Google Scholar 

  109. Cheng N, Bhowmick NA, Chytil A, Gorska AE, Brown KA, Muraoka R, et al. Loss of TGF-b type II receptor in fibroblasts promotes mammary carcinoma growth and invasion through upregulation of TGF-a, MSP-, and HGF-mediated signaling networks. Oncogene 2005;In Press.

  110. Bierie B, Moses HL. Transforming growth factor beta (TGF-beta) and inflammation in cancer. Cytokine Growth Factor Rev. 2010;21(1):49–59.

    Article  PubMed  CAS  Google Scholar 

  111. Michl P, Ramjaun AR, Pardo OE, Warne PH, Wagner M, Poulsom R, et al. CUTL1 is a target of TGF(beta) signaling that enhances cancer cell motility and invasiveness. Cancer Cell. 2005;7(6):521–32.

    Article  PubMed  CAS  Google Scholar 

  112. Ripka S, Konig A, Buchholz M, Wagner M, Sipos B, Kloppel G, et al. WNT5A–target of CUTL1 and potent modulator of tumor cell migration and invasion in pancreatic cancer. Carcinogenesis. 2007;28(6):1178–87.

    Article  PubMed  CAS  Google Scholar 

  113. Vogel WF, Aszodi A, Alves F, Pawson T. Discoidin domain receptor 1 tyrosine kinase has an essential role in mammary gland development. Mol Cell Biol. 2001;21(8):2906–17.

    Article  PubMed  CAS  Google Scholar 

  114. Faraci-Orf E, McFadden C, Vogel WF. DDR1 signaling is essential to sustain Stat5 function during lactogenesis. J Cell Biochem. 2006;97(1):109–21.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Breast cancer research in R. Serra’s laboratory was supported by NIH R01 CA126942. S.E. Baxley was supported by the UAB Cancer Prevention and Control Training Program, NCI R25 CA047888 and MSTP training grant T32 GM008361.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosa Serra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Serra, R., Easter, S.L., Jiang, W. et al. Wnt5a as an Effector of TGFβ in Mammary Development and Cancer. J Mammary Gland Biol Neoplasia 16, 157–167 (2011). https://doi.org/10.1007/s10911-011-9205-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10911-011-9205-5

Keywords

Navigation