Skip to main content
Log in

The Discovery of Superfluidity

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Superfluidity is a remarkable manifestation of quantum mechanics at the macroscopic level. This article describes the history of its discovery, which took place at a particularly difficult period of the twentieth century. A special emphasis is given to the role of J.F. Allen, D. Misener, P. Kapitza, F. London, L. Tisza and L.D. Landau. The nature and the importance of their respective contributions are analyzed and compared. Of particular interest is the controversy between Landau on one side, London and Tisza on the other, concerning the relevance of Bose–Einstein condensation to the whole issue, and also on the nature of thermal excitations in superfluid helium 4. In order to aid my understanding of this period, I have collected several testimonies which inform us about the work and attitude of these great scientists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lifshitz E.M., (1958). Superfluidity. Scientific American 198, 30

    Google Scholar 

  2. For a review, see the Nobel lecture: E.A. Cornell and C.E. Wieman, Rev. Mod. Phys. 74, 875 (2002).

    Google Scholar 

  3. For a review, see the Nobel lecture: W. Ketterle, Rev. Mod. Phys. 74, 1131–1151 (2002).

    Google Scholar 

  4. Donnelly R., (1995). Phys. Today 48, 30

    Google Scholar 

  5. Leggett A.J., (1999). Rev. Mod. Phys. 71: S318

    Article  Google Scholar 

  6. Nozières P., Pines D., (1999). The Theory of Quantum Liquids. Perseus Books, Cambridge, Massachusetts

    Google Scholar 

  7. Gavroglu K., Fritz London, Cambridge University Press (1995).

  8. Griffin A., “A brief history of our understanding of BEC: from Bose to Beliaev”, Proc. of the Int. School of Physics Enrico Fermi, M. Inguscio, S. Stringari and C.E. Wieman (eds), IOS press (1999) p. 1.

  9. Griffin A., (2005). Phys. Can. 61, 33

    Google Scholar 

  10. Matricon J. and G. Waysand, La Guerre du Froid Seuil, Paris (1994) and its English translation: The Cold Wars: A History of Superconductivity Rutgers University Press (2003)

  11. Kapitza P., (1938). Nature 141, 74

    Google Scholar 

  12. Allen J.F., Misener A.D., (1938). Nature 141, 75

    Google Scholar 

  13. M. Wolfke and Keesom W.H., Proc. Amst. 31, 81 (1927). [W. H. Keesom and M. Wolfke, Leiden. Comm. 190b, (1927)].

  14. W. H. Keesom and K. Clusius, Leiden Comm. 219e (1932). [Proc. Sect. Sci. K. Ned. Acad. Wet. 35, 307 (1932)].

  15. For a review on this work, see W.H. Keesom, Helium, Elsevier, Amsterdam (1942).

  16. Keesom W.H., Keesom A.P., (1936). Physica 3, 359

    Article  ADS  Google Scholar 

  17. Rollin B.V., (1935). Physica 2, 557

    Article  Google Scholar 

  18. Allen J.F., Peierls R., Uddin Z., (1937). Nature 140, 62

    Google Scholar 

  19. Wilks J., (1967). The properties of liquid and solid helium. Clarendon Press, Oxford

    Google Scholar 

  20. Burton E.F., (1935). Nature 135, 265

    Google Scholar 

  21. Dash J.G. and Taylor R.D., Phys. Rev. 105 7 (1957); 106 398 (1957).

  22. Andronikashvili F.L., (1989). Reflections on liquid helium. American Institute of Physics, New York

    Google Scholar 

  23. Cao L., Brewer D.F., Girit C., Smith E.N., Reppy J.D., (1986). Phys. Rev. B 33, 106–117

    Article  ADS  Google Scholar 

  24. H. Meyer, Low Temperature Measurement in Measurement of the Transport Properties of Fluids, IUPAC series on Experimental Thermodynamics, W. A. Wakeham, A. Nagashima and J. V. Sengers (eds), Blackwell Scientific Publications, Oxford, (1991), Vol. III, p. 391.

  25. Wilhelm J.O., Misener A.D., Clark A.R., (1935). Proc. R. Soc. A 151, 342

    Article  ADS  Google Scholar 

  26. McLennan J.C., Smith H.D., Wilhelm J.O., (1932). Phil. Mag. 14, 161

    Google Scholar 

  27. A. Griffin, Austin Donald Misener 1911–1996, Proc. R. Soc. Can., sixth series (2001), vol. XII, p. 223 and private communication to be published.

  28. D. Shoenberg, Kapitza centenary symposium at the Cavendish laboratory, Cambridge, 8 July 1994, Physics-Uspekhi 37, 1213 (1994).

  29. Rubinin P.E., (1997). The discovery of superfluidity. Physics-Uspekhi 40: 1249

    Article  ADS  Google Scholar 

  30. Allen J.F., (1988). Phys. World 1, 29

    Google Scholar 

  31. In 1951, Sir John Douglas Cockcroft and Ernest Thomas Sinton Walton received the Nobel prize “for their pioneer work on the transmutation of atomic nuclei by artificially accelerated atomic particles”. The presentation speech mentioned that “The analysis made by Cockcroft and Walton of the energy relations in a transmutation is of particular interest, because a verification was provided by this analysis for Einstein’s law concerning the equivalence of mass and energy”. By accelerating protons and analyzing their collisions with a lithium layer, they observed the transmutation of Li into He atoms whose energy measurement provided the first experimental verification of the famous relation Emc 2.

  32. Keesom W.H., van der Ende J.N., (1930). Proc. R. Ac. Amsterdam 33, 24

    Google Scholar 

  33. D. Shoenberg, private lett, 22 Jan. 2001.

  34. F. London and H. London, Physica 2, 341 (1935). [F. London, Proc. R. A 152 24 (1935)].

  35. London F., (1938). Nature 141, 643

    Google Scholar 

  36. Allen J.F., Jones H., (1938). Nature 141, 243

    Google Scholar 

  37. London F., (1936). Proc. R. Soc. A 153, 576

    Article  ADS  Google Scholar 

  38. London F., Superfluids I, Wiley, NY P.4 (1950).

  39. A. Païs, Subtle is the Lord, p.432, Clarendon Press, Oxford (1982).

  40. Bose S.N., (1924). Z. Phys. 26, 178

    Article  Google Scholar 

  41. A. Einstein, Ber. Berl. Akad. 261 (1924); 3 (1925).

  42. Uhlenbeck G.E., Dissertation, Leiden, (1927).

  43. Kahn B., Uhlenbeck G.E., (1938). Physica 5, 399

    Article  ADS  Google Scholar 

  44. Simon F., (1934). Nature 133, 529

    Google Scholar 

  45. London F., (1938). Phys. Rev. 54, 947

    Article  MATH  ADS  Google Scholar 

  46. Teller E., (1998). Science 280: 1200

    Article  ADS  Google Scholar 

  47. In June 2001 I invited Tisza to give a colloquium in our Department and we had long discussions about his stay in France (1937–1941).

  48. Tisza L., (1938). Nature 141, 913

    Google Scholar 

  49. Tisza L., Comptes Rendus Acad. Sc. 207, 1035; 1186 (1938).

    Google Scholar 

  50. London H., (1938). Nature 142, 612

    Google Scholar 

  51. Daunt J.G., Mendelssohn K., (1939). Nature 143, 719

    MATH  Google Scholar 

  52. Kapitza P.L., (1941). Phys. Rev. 60, 354

    Article  ADS  Google Scholar 

  53. L. Tisza, e-mail to S. Balibar, September 12, (2000).

  54. B. V. Rollin, Actes 7ième Cong. Int. du Froid, 1, 187 (1936); N. Kuerti, B. V. Rollin, and F. Simon, Physica 3 266 (1936).

  55. Daunt J.G., Mendelssohn K., (1938). Nature 141, 911

    Google Scholar 

  56. L. Tisza, “The History of the two-fluid concept”, Centenary meeting of the Eötvös Society (Budapest, Hungary, Oct. 19, 1991). In his communication at this meeting, L. Tisza wrote: “ I had this idea one evening... When I presented all this to London the next morning, he was unimpressed... I made the minor prediction that the thermomechanical effect ought to have an inverse... This was readily verified. However, London persisted in his opposition to the idea that two velocity fields could persist in a liquid...”.

  57. L. Tisza, Physique J. et le Radium 1 164 (1940); 1, 350 (1940).

  58. H. Meyer, communication at the conference “Quantique... mais macroscopique, Hommage à Fritz London, physicien en exil”, Institut Henri Poincaré, Paris, 11 mai 2005.

  59. Pitaevskii L., (1992). 50 years of Landau’s theory of superfluidity. J. Low Temp. Phys. 87, 127

    Article  Google Scholar 

  60. G. E. Gorelik, The top secret life of Lev Landau, (1997), pp. 72–77.

  61. Account of this visit recorded by I.A. Zolitov, quoted in ref. 29.

  62. Landau L.D., (1941). Phys. Rev. 60, 356

    Article  MATH  ADS  Google Scholar 

  63. Landau L.D., (1941). J. Phys. USSR 5, 71

    Google Scholar 

  64. Landau L.D., (1947). J. Phys. USSR 11, 91

    Google Scholar 

  65. Keesom W.H., Keesom A.P., (1935). Physica 2, 557

    Article  ADS  Google Scholar 

  66. However, note that when writing that “the temperature at which ρ n equals unity is the λ-point of helium”, Landau does not necessarily mean that there is a real phase transition at this point, it could be just a crossover from a quantum to a classical behavior.

  67. London H., (1939). Proc. Roy. Soc. A 171, 484

    Article  MATH  ADS  Google Scholar 

  68. F. London, Rep. of an Int. Conf. on Fund. Part. and Low Temp., Cavendish Lab., 22-27 July 1946, p. 1 Taylor and Francis, London (1947) reprinted by R. Donnelly, Dept. of Physics, University of Oregon (1993).

  69. V. P. Peshkov, Rep. Int. Conf. Fund. Part. and Low Temp., Cavendish Lab., Cambridge 22-27 July 1946, p. 19 Taylor and Francis, London (1947) reprinted by R. Donnelly, Dept. of Physics, University of Oregon (1993).

  70. Peshkov V.P., (1948). Zh. Eksp. Teor. Fiz. 18, 951

    Google Scholar 

  71. Landau L., (1949). Phys. Rev. 75, 884

    Article  ADS  Google Scholar 

  72. Volovik G., (2006). oral discussion at the ULTI meeting. Lammi, Finland

    Google Scholar 

  73. Bogoliubov N.N., (1947). J. Phys. USSR 11, 23

    Google Scholar 

  74. Penrose O., (1951). Phil. Mag. 42: 1373

    MATH  Google Scholar 

  75. Penrose O., Onsager L., (1956). Phys. Rev. 104, 576

    Article  MATH  ADS  Google Scholar 

  76. Landau L.D., (1956). Sov. Phys. JETP 3, 920

    Google Scholar 

  77. Maris H.J., J. Low Temp. Phys. 94, 125 (1994); 98, 403 (1995).

    Google Scholar 

  78. Caupin F., Balibar S., (2001). Phys. Rev. B 64: 064507

    Article  ADS  Google Scholar 

  79. Osborne D.W., Weinstock B., Abraham B.M., (1949). Phys. Rev. 75, 988

    Article  ADS  Google Scholar 

  80. Osheroff D.D., Richardson R.C. and Lee D.M., Phys. Rev. Lett. 28 885 (1972) [Nobel Lecture, Rev. Mod. Phys. 69, 667 (1997)].

  81. Leggett A.J., Phys. Rev. Lett. 29, 1227 (1972) [Nobel Lecture, Rev. Mod. Phys. 76 999 (2004)].

  82. Henshaw D.G., Woods A.D.B., (1961). Phys. Rev. 121: 1266

    Article  ADS  Google Scholar 

  83. Balibar S., Buechner J., Castaing B., Laroche C., Libchaber A., (1978). Phys. Rev. B 18: 3096

    Article  ADS  Google Scholar 

  84. Anderson P.W., (1969). Phys. Lett. A 29, 563

    Article  ADS  Google Scholar 

  85. Hope F.R., Baird M.J., Wyatt A.F.G., (1984). Phys. Rev. Lett. 52: 1528

    Article  ADS  Google Scholar 

  86. Brown M., Wyatt A.F.G., (1990). J. Phys.: Condens. Matter 2: 5025

    Article  ADS  Google Scholar 

  87. Tucker M.A.H., Wyatt A.F.G., (1999). Science 283: 1150

    Article  ADS  Google Scholar 

  88. Feynman R.P., Prog. in Low Temp. Phys. C.G. Gorter ed., North Holland Publishers, Amsterdam (1955), vol. 1

  89. Nozières P., (2004). J. Low Temp. Phys. 137, 45

    Article  Google Scholar 

  90. Horner H., (1972). Phys. Rev. Lett. 29, 556

    Article  ADS  Google Scholar 

  91. Pomeau Y., Rica S., (1994). Phys. Rev. Lett. 72: 2426

    Article  ADS  Google Scholar 

  92. Ishiguro R., Caupin F., and Balibar S., Europhys. Lett. 75 91 (2006) and references therein.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sébastien Balibar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balibar, S. The Discovery of Superfluidity. J Low Temp Phys 146, 441–470 (2007). https://doi.org/10.1007/s10909-006-9276-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-006-9276-7

PACS Numbers

Navigation