Skip to main content

Advertisement

Log in

The Role of Vanadium in the Chemical Defense of the Solitary Tunicate, Phallusia nigra

Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Ascidians (sea squirts) may defend themselves from predators, biofouling competitors, and bacterial infection by producing secondary metabolites or sequestering acid, but many species also accumulate heavy metals, most notably vanadium. The defensive functions of heavy metals in ascidians remain unclear, and to this end, the solitary Caribbean tunicate, Phallusia nigra, was studied to localize vanadium in its tissues and to assess the defensive properties of vanadium-containing compounds. As determined by flame atomic absorption spectroscopy, the internal tissues and blood contained the highest vanadium concentrations (mean values of 2,280 and 1,886 ppm dry mass, respectively), followed by the tunic surface (871 ppm dry mass). Results of laboratory feeding assays with the bluehead wrasse, Thalassoma bifasciatum, confirmed outcomes of past studies that demonstrated that vanadyl sulfate (VOSO4·6H2O) and sodium vanadate (Na3VO4) were unpalatable to fish, although these salts do not accurately reflect the chelation environment or oxidation state of vanadium in living tunicates. Fresh preparations of whole tunic, internal tissues, and blood were unpalatable to fish, but freezing and thawing of internal tissues and blood rendered them palatable. Crude organic extracts of whole tunic and internal tissues contained vanadium metabolites (225 and 750 ppm dry mass, respectively) and were palatable to T. bifasciatum; crude extracts also exhibited no antimicrobial effects against a panel of four marine bacteria known to be pathogens of marine invertebrates (Vibrio parahaemolyticus, Vibrio harveyi, Leucothrix mucor, and Deleya marina). Nonacidic vanadium (+3) complexes neither deterred predation nor inhibited microbial growth, whereas acidic aqua vanadium (+3 and +4) complexes were unpalatable to T. bifasciatum and exhibited antimicrobial activity. Difficulties in decoupling low pH from oxidation state and chelation environment of vanadium prevent definitive conclusions about the importance of some vanadium metabolites, but low pH appears to be the principal agent of chemical defense for P. nigra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

References

  • Brand, S. G., Hawkins, C. J., Marshall, A. T., Nette, G. W., and Parry, D. L. 1989. Vanadium chemistry of ascidians. Comp. Biochem. Physiol. 93B(2):425–436.

    CAS  Google Scholar 

  • Bruening, R. C., Oltz, E. M., Furukawa, J., and Nakanishi, K. 1985. Isolation of tunichrome B-1, a reducing blood pigment of the sea squirt, Ascidia nigra. J. Nat. Prod. 49(2):193–204.

    Article  Google Scholar 

  • Ciereszko, L. S., Ciereszko, E. M., Harris, E. R., and Lane, C. A. 1963. Vanadium content of some tunicates. Comp. Biochem. Physiol. 8:137–140.

    Article  CAS  Google Scholar 

  • Cooper, S. R., Koh, Y. B., and Raymond, K. N. 1982. Synthetic, structural, and physical studies of bis(triethylammonium) tris(catecholato) vanadate(IV), potassium bis(catecholato) oxovanadate(IV), and potassium tris(catecholato) vanadate(III). J. Am. Chem. Soc. 104:5092–5102.

    Article  CAS  Google Scholar 

  • Davis, A. R. and Wright, A. E. 1989. Interspecific differences in fouling of two congeneric ascidians (Eudistoma olivaceum and E. capsulatum): is surface acidity an effective defense? Mar. Biol. 102:491–497.

    Article  Google Scholar 

  • Dingley, A. L., Kustin, K., Macara, I. G., McLeod, G. C., and Roberts, M. F. 1982. Vanadium-containing tunicate blood cells are not highly acidic. Biochim. Biophys. Acta 720:384–389.

    Article  PubMed  CAS  Google Scholar 

  • Dworjanyn, S. A., De Nys, R., and Steinberg, P. D. 1999. Localisation and surface quantification of secondary metabolites in the red alga Delisea pulchra. Mar. Biol. 102:491–497.

    Google Scholar 

  • Frank, P., Carlson, R. M. K., Carlson, E. J., and Hodgson, K. O. 2003. Medium-dependence of vanadium K-edge X-ray absorption spectra with application to blood cells from phlebobranch tunicates. Coord. Chem. Rev. 237(1–2):31–39.

    Article  CAS  Google Scholar 

  • Goodbody, I. 1962. A biology of Ascidia nigra (Savigny). I. Survival and mortality in an adult population. Biol. Bull. 122:40–51.

    Article  Google Scholar 

  • Hernández-Zanuy, A. C. and Carballo, J. L. 2001. Distribution and abundance of ascidian assemblages in Caribbean reef zones of the Golfo de Batabanó (Cuba). Coral Reefs 20:159–162.

    Article  Google Scholar 

  • Hirose, E. 1999. Pigmentation and acid storage in the tunic: protective functions of the tunic cells in the tropical ascidian Phallusia nigra. Invertebr. Biol. 118(4):414–422.

    Article  Google Scholar 

  • Hirose, E., Yamashiro, H., and Mori, Y. 2001. Properties of tunic acid in the ascidian Phallusia nigra (Ascidiidae, Phlebobranchia). Zool. Sci. 18:309–314.

    Article  Google Scholar 

  • Kelly, S. R., Jensen, P. R., Henkel, T. P., Fenical, W., and Pawlik, J. R. 2003. Effects of Caribbean sponge extracts on bacterial attachment. Aquat. Microb. Ecol. 31:175–182.

    Google Scholar 

  • Kustin, K., Levine, D. S., McLeod, G. C., and Curby, W. A. 1976. The blood of Ascidia nigra: blood cell frequency distribution, morphology, and the distribution and valence of vanadium in living blood cells. Biol. Bull. 150:426–441.

    Article  CAS  Google Scholar 

  • Lambert, G. and Lambert, C. C. 1987. Spicule formation in the solitary ascidian, Herdmania momus. J. Morph. 192:145–159.

    Article  Google Scholar 

  • López-Legentil, S., Turon, X., and Schupp, P. 2006. Chemical and physical defenses against predators in Cystodytes (Ascidiacea). J. Exp. Mar. Biol. Ecol. 332(1):27–36.

    Article  Google Scholar 

  • Lindquist, N., Hay, M. E., and Fenical, W. 1992. Defense of ascidians and their conspicuous larvae: adult vs. larval chemical defenses. Ecol. Monogr. 62(4):547–568.

    Article  Google Scholar 

  • Michibata, H., Yamaguchi, N., Uyama, T., and Ueki, T. 2003. Molecular approaches to the accumulation and reduction of vanadium by ascidians. Coord. Chem. Rev. 237:41–51.

    Article  CAS  Google Scholar 

  • Newbold, R. W., Jensen, P. R., Fenical, W., and Pawlik, J. R. 1999. Antimicrobial activity of Caribbean sponge extracts. Aquat. Microb. Ecol. 19:279–284.

    Google Scholar 

  • Parry, D. L. 1984. Chemical properties of the test of ascidians in relation to predation. Mar. Ecol. Prog. Ser. 17:279–282.

    CAS  Google Scholar 

  • Pawlik, J. R. 1993. Marine invertebrate chemical defenses. Chem. Rev. 93:1911–1922.

    Article  CAS  Google Scholar 

  • Pawlik, J. R., Chanas, B., Toonen, R. J., and Fenical, W. 1995. Defenses of Caribbean sponges against predatory reef fish: I. Chemical deterrency. Mar. Ecol. Prog. Ser. 127:183–194.

    CAS  Google Scholar 

  • Pisut, D. P. and Pawlik, J. R. 2002. Anti-predatory chemical defenses of ascidians: secondary metabolites or inorganic acids? J. Exp. Mar. Biol. Ecol. 207:203–214.

    Article  Google Scholar 

  • Rehder, D. 1999. The coordination chemistry of vanadium as related to its biological functions. Coord. Chem. Rev. 182:297–322.

    Article  Google Scholar 

  • Selbin, J. 1966. Oxovanadium(IV) complexes. Coord. Chem. Rev. 1(3):293–314.

    Article  CAS  Google Scholar 

  • Sahade, R., Tatian, M., Kowalke, J., Kuehne, S., and Esnal, G. B. 1998. Benthic faunal association of soft substrates at Potter Cove, King George Island, Antarctica. Polar Biol. 19(2):85–91.

    Article  Google Scholar 

  • Stoecker, D. 1978. Resistance of a tunicate to fouling. Biol. Bull. 155:615–626.

    Article  Google Scholar 

  • Stoecker, D. 1980a. Relationships between chemical defense and ecology in benthic ascidians. Mar. Ecol. Prog. Ser. 3:257–265.

    CAS  Google Scholar 

  • Stoecker, D. 1980b. Chemical defenses of ascidians against predators. Ecology 61(6):1327–1334.

    Article  CAS  Google Scholar 

  • Swinehart, J. H., Biggs, W. R., Halko, D. J., and Schroeder, N. C. 1974. The vanadium and selected metal contents of some ascidians. Biol. Bull. 146:302–312.

    Article  PubMed  CAS  Google Scholar 

  • Tarjuelo, I., López-Legentil, S., Codina, M., and Turon, X. 2002. Defence mechanisms of adults and larvae of marine invertebrates: patterns of toxicity and palatability in colonial ascidians. Mar. Ecol. Prog. Ser. 235:103–115.

    Google Scholar 

  • Thompson, T. E. 1960. Defensive acid-secretion in marine gastropods. J. Mar. Biol. Assoc. U.K. 39:499–517.

    Google Scholar 

  • Van Alstyne, K. L., McCarthy, J. J., Hustead, C. L., and Kearns, L. J. 1999. Phlorotannin allocation among tissues of Northeastern Pacific kelps and rockweeds. J. Phycol. 35:483–492.

    Article  Google Scholar 

  • Wahl, M., Jensen, P. R., and Fenical, W. 1994. Chemical control of bacterial epibiosis on ascidians. Mar. Ecol. Prog. Ser. 110:45–57.

    Google Scholar 

  • Webb, D. A. 1939. Observations on the blood of certain ascidians, with special reference to the biochemistry of vanadium. J. Exp. Biol. 16:499–523.

    CAS  Google Scholar 

  • Zangerl, A. R. and Rutledge, C. E. 1996. The probability of attack and patterns of constitutive and induced defense: a test of optimal defense theory. Am. Nat. 147:599–607.

    Article  Google Scholar 

Download references

Acknowledgments

This research was funded by grants from the NOAA/NURC Program (NOAA-NA96RU-0260), from the National Science Foundation Biological Oceanography Program (OCE-0095724, 0550468), and by a GlaxoWellcome Ocean and Human Health Fellowship. We thank Robert D. Hancock, Richard M. Dillaman, Richard D. Lancaster, Stephen A. Skrabal, and S. Bart Jones for advice and technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph R. Pawlik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Odate, S., Pawlik, J.R. The Role of Vanadium in the Chemical Defense of the Solitary Tunicate, Phallusia nigra . J Chem Ecol 33, 643–654 (2007). https://doi.org/10.1007/s10886-007-9251-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-007-9251-z

Keywords

Navigation