Skip to main content
Log in

Parallel Arms Races between Garter Snakes and Newts Involving Tetrodotoxin as the Phenotypic Interface of Coevolution

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Parallel “arms races” involving the same or similar phenotypic interfaces allow inference about selective forces driving coevolution, as well as the importance of phylogenetic and phenotypic constraints in coevolution. Here, we report the existence of apparent parallel arms races between species pairs of garter snakes and their toxic newt prey that indicate independent evolutionary origins of a key phenotype in the interface. In at least one area of sympatry, the aquatic garter snake, Thamnophis couchii, has evolved elevated resistance to the neurotoxin tetrodotoxin (TTX), present in the newt Taricha torosa. Previous studies have shown that a distantly related garter snake, Thamnophis sirtalis, has coevolved with another newt species that possesses TTX, Taricha granulosa. Patterns of within population variation and phenotypic tradeoffs between TTX resistance and sprint speed suggest that the mechanism of resistance is similar in both species of snake, yet phylogenetic evidence indicates the independent origins of elevated resistance to TTX.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Berenbaum, M. R. and Zangerl, A. R. 1992. Quantification of chemical coevolution, pp. 69–87, in R. S. Fritz and E. L. Simms (eds.). Plant Resistance to Herbivores and Pathogens: Ecology, Evolution, and Genetics. University of Chicago Press, Chicago.

    Google Scholar 

  • Brodie, E. D., Jr. 1968. Investigations on the skin toxin of the adult roughskinned newt, Taricha granulosa. Copeia 1968:307–313.

    Google Scholar 

  • Brodie, E. D., III and Brodie, E. D. Jr. 1990. Tetrodotoxin resistance in garter snakes: An evolutionary response of predators to dangerous prey. Evolution 44:651–659.

    Google Scholar 

  • Brodie, E. D., III and Brodie, E. D. Jr. 1999a. The cost of exploiting poisonous prey: Tradeoffs in a predator–prey arms race. Evolution 53:626–631.

    Google Scholar 

  • Brodie, E. D., III and Brodie, E. D. Jr. 1999b. Predator–prey arms races. Bioscience 49:557–568.

    Google Scholar 

  • Brodie, E. D., III and Ridenhour, B. J. 2003. Reciprocal selection at the phenotypic interface of coevolution. Integr. Comp. Biol. 43:408–418.

    Google Scholar 

  • Brodie, E. D., Jr., Hensel, J. L., Jr., and Johnson, J. A. 1974. Toxicity of the urodele amphibians Taricha, Notophthalmus, Cynops and Paramesotriton (Salamandridae). Copeia 1974:506– 511.

    Google Scholar 

  • Brodie, E. D., Jr., Ridenhour, B. J., and Brodie, E. D., III. 2002. The evolutionary response of predators to dangerous prey: Hotspots and coldspots in the geographic mosaic of coevolution between newts and snakes. Evolution 56:2067–2082.

    Google Scholar 

  • Brown, M. S. and Mosher, H. S. 1963. Tarichatoxin: Isolation and purification. Science 140:295–296.

    Google Scholar 

  • Cardall, B. L., Brodie, E. D., III, Brodie, E. D., Jr., and Hanifin, C. T. 2004. Secretion and regeneration of tetrodotoxin in the rough-skin newt (Taricha granulosa). Toxicon, 44:933-938.

    Google Scholar 

  • De Queiroz, A., Lawson, R., and Lemos-Espinal, J. A. 2002. Phylogenetics relationships of North American garter snakes (Thamnophis) based on four mitochondrial genes: How much DNA sequence is enough? Mol. Phylogenet. Evol. 22:315–329.

    Google Scholar 

  • Denholm, I., Pickett, J. A., and Devonshire, A. L. 1999. Insecticide Resistance from Mechanisms to Management. CABI Publishing, New York, 123 pp.

    Google Scholar 

  • ffrench-Constant, R. H., Anthony, N., Aronstein, K., Rocheleau, T., and Stilwell, G. 2000. Cyclodiene insecticide resistance: From molecular to population genetics. Annu. Rev. Entomol. 48:449–466.

    Google Scholar 

  • Geffeney, S., Ruben, P. C., Brodie, E. D., Jr., and Brodie, E. D., III. 2002. Mechanisms of adaptation in a predator–prey arms race: TTX resistant sodium channels. Science 297:1336-1339.

    Google Scholar 

  • Hanifin, C. T., Yotsu-Yamashita, M., Yasumoto, T., Brodie, E. D., III, and Brodie, E. D., Jr. 1999. Toxicity of dangerous prey: Variation of tetrodotoxin levels within and among populations of the newt Taricha granulosa. J. Chem. Ecol. 25:2161–2175.

    Google Scholar 

  • Hanifin, C. T., Brodie, E. D., III, and Brodie, E. D., Jr. 2002. Tetrodotoxin levels of the rough-skin newt, Taricha granulosa, increase in long-term captivity. Toxicon 40:1149–1153.

    Google Scholar 

  • Hanifin, C. T., Brodie, E. D., III, and Brodie, E. D., Jr. 2004. A predictive model to estimate total skin tetrodotoxin in the newt Taricha granulosa. Toxicon 43:243–249. (doi:10.1016/j.toxicon. 2003.11.025).

    Google Scholar 

  • Hille, B. 1992. Ionic Channels of Excitable Membranes. Sinauer, Sunderland, MA.

    Google Scholar 

  • JMP v 5.01, 5.01. 1989–2002. SAS Institute, Cary, NC.

  • Kao, C. Y. and Fuhrman, F. A. 1967. Differentiation of the actions of tetrodotoxin and saxitoxin. Toxicon 5:24–34.

    Google Scholar 

  • Kidokoro, Y., Grinnell, A. D., and Eaton, D. C. 1974. Tetrodotoxin sensitivity of muscle action potentials in pufferfishes and related fishes. J. Comp. Phsyiol. 89:59–72.

    Google Scholar 

  • Lehman, E., Brodie, E. D., Jr., and Brodie, E. D., III. 2004. No evidence for an endosymbiotic bacterial origin of tetrodotoxin in the newt Taricha granulosa. Toxicon 44:243–249.

    Google Scholar 

  • Mallet, J. 1989. The evolution of insecticide resistance: Have the insects won? Trends Ecol. Evol. 4:336–339.

    Google Scholar 

  • McKenzie, J. A. and Batterham, P. 1994. The genetic, molecular and phenotypic consequences of selection for insecticide resistance. Trends Ecol. Evol. 9:166–169.

    Google Scholar 

  • Miyazawa, K. and Noguchi, T. 2001. Distribution and origin of tetrodotoxin. J. Toxicol. Toxin Rev. 20:11–33.

    Google Scholar 

  • Mosher, H. S., Fuhrman, F. A., Buchwald, H. D., and Fischer, H. G. 1964. Tarichatoxin–tetrodotoxin: A potent neurotoxin. Science 144:1100–1110.

    Google Scholar 

  • Motychak, J. E., Brodie, E. D., Jr., and Brodie, E. D., III. 1999. Evolutionary response of predators to dangerous prey: Preadaptation and the evolution of tetrodotoxin resistance in garter snakes. Evolution 53:1528–1535.

    Google Scholar 

  • Narahashi, T. 2001. Pharmacology of tetrodotoxin. J. Toxicol. Toxin Rev. 20:67–84.

    Google Scholar 

  • Ridenhour, B. J., Brodie, E. D., Jr., and Brodie, E. D., III. 2004. Neonate and field-collected garter snake (Thamnophis spp.) resistance to tetrodotoxin. J. Chem. Ecol. 30:143–154.

    Google Scholar 

  • Shimizu, Y. 2002. Biosynthesis of important marine toxins of microorganism origins, pp. 257–268, in E. J. Massaro (ed.). Handbook of Neurotoxicology. Humana Press, New Jersey.

    Google Scholar 

  • Tan, A. M. and Wake, D. B. 1995. MtDNA phylogeography of the California Newt, Taricha torosa (Caudata, Salamandridae). Mol. Phylogenet. Evol. 4:383–394.

    Google Scholar 

  • Williams, B. L., Brodie, E. D., Jr., and Brodie, E. D., III. 2001. Comparisons between toxic effects of tetrodotoxin administered orally and by intraperitoneal injection to the garter snake Thamnophis sirtalis. J. Herp. 36:112–115.

    Google Scholar 

  • Yasumoto, T. and Michishita, T. 1985. Flourometric determination of tetrodtoxin by high performance liquid chromatography. Agric. Biol. Chem. 49:3077–3080.

    Google Scholar 

  • Yasumoto, T., Yotsu, M., Murata, M., and Naoki, H. 1988. New tetrodotoxin analogues from the newt Cynops ensicauda. J. Am. Chem. Soc. 110:2344–2345.

    Google Scholar 

  • Yotsu, M., Endo, A., and Yasumoto, T. 1990. Distribution of tetrodotoxin, 6-epitetrodotoxin, and 11-deoxytetrodotoxin in newts. Toxicon 28:238–241.

    Google Scholar 

  • Yotsu-Yamashita, M. 2001. The levels of tetrodotoxin and its analogue 6-epitetrodotoxin in the red-spotted newt, Notophthalmus viridescens. Toxicon 38:1261–1263.

    Google Scholar 

  • Yotsu-Yamashita, M., Nishimori, K., Nitanai, Y., Isemura, M., Sugimoto, A., and Yasumoto, T. 2000. Binding properties of 3H-PbTx-3 and 3H-Saxitoxin to brain membranes and to skeletal muscle membranes of puffer fish Fugu pardalis and the primary structure of a voltage gated Na+ channel α-subunit (fMNa1) from skeletal muscle of F. pardalis. Biochem. Biophys. Res. Commun. 267:403–412.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brodie, E.D., Feldman, C.R., Hanifin, C.T. et al. Parallel Arms Races between Garter Snakes and Newts Involving Tetrodotoxin as the Phenotypic Interface of Coevolution. J Chem Ecol 31, 343–356 (2005). https://doi.org/10.1007/s10886-005-1345-x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-005-1345-x

Keywords

Navigation