Skip to main content

Advertisement

Log in

Monozygotic Twin Pair Showing Discordant Phenotype for X-linked Thrombocytopenia and Wiskott–Aldrich Syndrome: a Role for Epigenetics?

  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Despite our increasing characterization of the molecular basis for many primary immunodeficiency states, significant heterogeneity in clinical and immunological phenotype exists. Epigenetic alterations have been implicated in the pathogenesis of immune dysregulation and may provide a unique paradigm to help us understand the phenotypic heterogeneity in primary immunodeficiency. The occurrence of X-linked thrombocytopenia (XLT) and Wiskott–Aldrich syndrome (WAS) in monozygotic twins is a rare occurrence which allows for the exploration of epigenetic alterations and associated phenotypic heterogeneity. We describe a pair of monozygotic twin brothers with a missense mutation in the WAS gene consistent with reduced expression of the WAS protein, a XLT phenotype, and a good prognosis. Despite this genotype and anticipated mild phenotype in both twins, a discordant phenotype has evolved in which one twin demonstrates asymptomatic thrombocytopenia and the other symptomatic thrombocytopenia, infectious complications, and autoimmunity. Characterization of the potential epigenetic contribution to the spectrum of XLT and WAS is described and the implications of these findings are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Notarangelo LD. Primary immunodeficiencies. J Allergy Clin Immunol. 2010;125:S182–94.

    Article  PubMed  Google Scholar 

  2. Lim MS, Elenitoba-Johnson K. The molecular pathology of primary immunodeficiencies. J Mol Diagn. 2004;6:59–83.

    Article  PubMed  CAS  Google Scholar 

  3. Morange M. The relations between genetics and epigenetics: a historical point of view. Ann N Y Acad Sci. 2002;981:50–60.

    Article  PubMed  CAS  Google Scholar 

  4. Holiday R. Epigenetics: a historical overview. Epigenetics. 2006;1:76–80.

    Article  Google Scholar 

  5. Geha RS, Notarangelo LD, Casanova J-L, et al. Primary immunodeficiency diseases: an update from the International Union of Immunological Societies Primary Immunodeficiency Diseases Classification Committee. J Allergy Clin Immunol. 2007;120:776–94.

    Article  PubMed  Google Scholar 

  6. Buckley RH. Variable phenotypic expression of mutations in genes of the immune system. J Clin Invest. 2005;115:2974–6.

    Article  PubMed  CAS  Google Scholar 

  7. Meda F, Folci M, Baccarelli A, et al. The epigenetics of autoimmunity. Cell Mol Immunol. 2011;8:226–36.

    Article  PubMed  CAS  Google Scholar 

  8. Hewagama A, Richardson B. The genetics and epigenetics of autoimmune disease. J Autoimmun. 2009;33:3–11.

    Article  PubMed  CAS  Google Scholar 

  9. Erlich M, Sanchez C, Shao C, et al. ICF, an immunodeficiency syndrome: DNA methyltransferase 3B involvement, chromosome anomalies, and gene dysregulation. Autoimmunity. 2008;41:253–71.

    Article  Google Scholar 

  10. Erlich M. The ICF syndrome, a DNA methyltransferase 3B deficiency and immunodeficiency disease. Clin Immunol. 2003;109:17–28.

    Article  Google Scholar 

  11. Bosticardo M, Marangoni F, Aiuti A, et al. Recent advances in understanding the pathophysiology of Wiskott–Aldrich syndrome. Blood. 2009;113:6288–95.

    Article  PubMed  CAS  Google Scholar 

  12. Ochs HD, Filipovich AH, Veys P, et al. Wiskott–Aldrich syndrome: diagnosis, clinical and laboratory manifestations, and treatment. Biol Blood Marrow Transplant. 2009;15:84–90.

    Article  PubMed  Google Scholar 

  13. Albert MH, Bittner TC, Nonoyama S, et al. X-linked thrombocytopenia (XLT) due to WAS mutations: clinical characteristics, long-term outcome, and treatment options. Blood. 2010;115:3231–8.

    Article  PubMed  CAS  Google Scholar 

  14. Gulacsy V, Freiberger T, Shcherbina A, et al. Genetic characteristics of eighty-seven patients with the Wiskott–Aldrich syndrome. Mol Immunol. 2011;48:788–92.

    Article  PubMed  CAS  Google Scholar 

  15. Thompson LJ, Lalloz M, Layton DM. Unique and recurrent WAS gene mutation in Wiskott–Aldrich syndrome and X-linked thrombocytopenia. Blood Cells Mol Dis. 1999;25:218–26.

    Article  PubMed  CAS  Google Scholar 

  16. Zhu Q, Watanabe C, Liu T, et al. Wiskott–Aldrich syndrome/X-linked thrombocytopenia: WASP gene mutations, protein expression, and phenotype. Blood. 1997;90:2680–9.

    PubMed  CAS  Google Scholar 

  17. Jin Y, Mazza C, Christie JR, et al. Mutations of the Wiskott–Aldrich syndrome protein (WASP): hotspots, effect on transcription, and translation and phenotype/genotype correlation. Blood. 2004;104:4010–9.

    Article  PubMed  CAS  Google Scholar 

  18. Imai K, Morio T, Zhu Y, et al. Clinical course of patients with WASP gene mutations. Blood. 2004;103:456–64.

    Article  PubMed  CAS  Google Scholar 

  19. Schindelhauer D, Weiss M, Hellebrand H, et al. Wiskott–Aldrich syndrome: no strict genotype–phenotype correlations but clustering of missense mutations in the amino-terminal part of the WASP gene product. Hum Genet. 1996;98:68–76.

    Article  PubMed  CAS  Google Scholar 

  20. Fillat C, Espanol T, Oset M, et al. Identification of WASP mutations in 14 Spanish families with Wiskott–Aldrich syndrome. Am J Med Genet. 2001;100:116–21.

    Article  PubMed  CAS  Google Scholar 

  21. Yu GP, Chiang D, Song SJ, et al. Regulatory T cell dysfunction in subjects with common variable immunodeficiency complicated by autoimmune disease. Clin Immunol. 2009;131:240–53.

    Article  PubMed  CAS  Google Scholar 

  22. Nadeau KC, Callejas A, Wong WB, et al. Idiopathic neutropenia of childhood is associated with Fas/FasL expression. Clin Immunol. 2008;129:438–47.

    Article  PubMed  CAS  Google Scholar 

  23. Nguyen KD, Vanichsarn C, Fohner A, et al. Selective deregulation in chemokine signaling pathways of CD4 + CD25(hi)CD127(lo)/(−) regulatory T cells in human allergic asthma. J Allergy Clin Immunol. 2009;123:933–9.

    Article  PubMed  CAS  Google Scholar 

  24. Forsyth K, Seshadri R, Matthews C, Heddle R. Wiskott–Aldrich in identical twins: abnormality of CD4 and CD8 positive lymphocytes. Aust NZ J Med. 1988;18:73–6.

    Article  CAS  Google Scholar 

  25. Xie H, Wang M, de Andrade A, et al. Genome-wide quantitative assessment of variation in DNA methylation patterns. Nucleic Acids Res. 2011;39:4099–108.

    Article  PubMed  CAS  Google Scholar 

  26. Ushijima T, Watanabe N, Okochi E, et al. Fidelity of the methylation pattern and its variation in the genome. Genome Res. 2003;13:868–74.

    Article  PubMed  CAS  Google Scholar 

  27. Pearce EL. Making sense of inflammation, epigenetics, and memory CD8+ T-cell differentiation in the context of infection. Immunol Rev. 2006;211:197–202.

    Article  PubMed  CAS  Google Scholar 

  28. McCall CE, Yoza B, Liu T, et al. Gene-specific epigenetic regulation in serious infections with systemic inflammation. J Innate Immun. 2010;2:395–405.

    Article  PubMed  Google Scholar 

  29. Csoka AB, Szyf M. Epigenetic side-effects of common pharmaceuticals: a potential new field in medicine and pharmacology. Med Hypotheses. 2009;73:770–80.

    Article  PubMed  CAS  Google Scholar 

  30. Copeland RA, Olhava EJ, Scott MP. Targeting epigenetic enzymes for drug discovery. Curr Opin Chem Biol. 2010;14:505–10.

    Article  PubMed  CAS  Google Scholar 

  31. Mack GS. Epigenetic cancer therapy makes headway. JNCI. 2006;98:1443–4.

    PubMed  Google Scholar 

Download references

Acknowledgments

We would also like to acknowledge the assistance of David Lewis, MD, Michael Jeng, MD, Kenneth Weinberg, MD, and Stephen Mao, PhD for their assistance in the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Buchbinder.

Additional information

David Buchbinder and Kari Nadeau are co-first authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buchbinder, D., Nadeau, K. & Nugent, D. Monozygotic Twin Pair Showing Discordant Phenotype for X-linked Thrombocytopenia and Wiskott–Aldrich Syndrome: a Role for Epigenetics?. J Clin Immunol 31, 773–777 (2011). https://doi.org/10.1007/s10875-011-9561-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-011-9561-3

Keywords

Navigation