Skip to main content
Log in

Thermodynamics and phase diagrams of lead-free solder materials

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Many of the existing and most promising lead-free solders for electronics contain tin or tin and indium as a low melting base alloy with small additions of silver and/or copper. Layers of nickel or palladium are frequently used contact materials. This makes the two quaternary systems Ag–Cu–Ni–Sn and Ag–In–Pd–Sn of considerable importance for the understanding of the processes that occur during soldering and during operation of the soldered devices. The present review gives a brief survey on experimental thermodynamic and phase diagram research in our laboratory. Thermodynamic data were obtained by calorimetric measurements, whereas phase equilibria were determined by X-ray diffraction, thermal analyses and metallographic methods (optical and electron microscopy). Enthalpies of mixing for liquid alloys are reported for the binary systems Ag–Sn, Cu–Sn, Ni–Sn, In–Sn, Pd–Sn, and Ag–Ni, the ternary systems Ag–Cu–Sn, Cu–Ni–Sn, Ag–Ni–Sn, Ag–Pd–Sn, In–Pd–Sn, and Ag–In–Sn, and the two quaternary systems themselves, i.e. Ag–Cu–Ni–Sn, and Ag–In–Pd–Sn. Enthalpies of formation are given for solid intermetallic compounds in the three systems Ag–Sn, Cu–Sn, and Ni–Sn. Phase equilibria are presented for binary Ni–Sn and ternary Ag–Ni–Sn, Ag–In–Pd and In–Pd–Sn. In addition, enthalpies of mixing of liquid alloys are also reported for the two ternary systems Bi–Cu–Sn and Bi–Sn–Zn which are of interest for Bi–Sn and Sn–Zn solders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Notes

  1. The association theory postulates a positive temperature coefficient of the enthalpy of mixing, but only for systems exhibiting exo- or endo-thermic behavior over the entire concentration range.

References

  1. A. Rahn, in The Basics of Soldering (John Wiley &Sons Inc., 1993), p. 1

  2. Y.A. Chang, S. Chen, F. Zhang, X. Yan, F. Xie, R. Schmid-Fetzer, W.A. Oates, Progr. Mater. Sci. 49, 313 (2004)

    Article  CAS  Google Scholar 

  3. A.T. Dinsdale, A. Watson, A. Kroupa, A. Zemanova, J. Vrestal, J. Vizdal, COST 531 Thermodynamic Database, Version 2.0 (2006) (http://www.slihot.co.uk/COST531/td_database.htm)

  4. R. Hultgren, P.D. Desai, D. Hawkins, M. Gleiser, K. Kelley, in “Selected Values of the thermodynamic properties of binary alloys” (AMS Metals Park, Ohio, 1971)

  5. P. Nash, A. Nash, Bull. Alloy Phase Diagrams 6, 350 (1985)

    CAS  Google Scholar 

  6. C. Luef, H. Flandorfer, H. Ipser, Thermochim. Acta 417, 47 (2004)

    Article  CAS  Google Scholar 

  7. U. Saeed, H. Flandorfer, H. Ipser, J. Mater. Res. 21, 1294 (2006)

    Article  Google Scholar 

  8. C. Luef, H. Flandorfer, H. Ipser, Z. Metallkde. 95, 151 (2004)

    CAS  Google Scholar 

  9. C. Luef, A. Paul, H. Flandorfer, A. Kodentsov, H. Ipser, J. Alloys Comp. 391, 67 (2005)

    Article  CAS  Google Scholar 

  10. C. Luef, H. Flandorfer, A. Paul, A. Kodentsov, H. Ipser, Intermetallics 13, 1207 (2005)

    Article  CAS  Google Scholar 

  11. A. Zemanova, A. Kroupa, J. Vrestal, O. Semenova, K. Chandrasekaran, K.W. Richter, H. Ipser, Monatsh. Chem. 136, 1931 (2005)

    Article  CAS  Google Scholar 

  12. A. Zemanova, O. Semenova, A. Kroupa, J. Vrestal, K. Chandrasekaran, K.W. Richter, H. Ipser, Intermetallics, 14, (2006), in press

  13. C. Luef, A. Paul, J. Vizdal, A. Kroupa, A. Kodentsov, H. Ipser, Monatsh. Chem. 137, 381 (2006)

    Article  CAS  Google Scholar 

  14. C. Luef, H. Flandorfer, H. Ipser, Metall. Mater. Trans. A 36A, 1273 (2005)

    Google Scholar 

  15. I. Karakaya, W.T. Thompson, Bull. Alloy Phase Diagrams 8, 340 (1987)

    CAS  Google Scholar 

  16. P.-Y. Chevalier, Thermochim. Acta 136, 45 (1988)

    Article  CAS  Google Scholar 

  17. Y. Xie, Z. Qiao, J. Phase Equil. 17, 208 (1996)

    CAS  Google Scholar 

  18. G.-V. Raynor, in Annotated Equilibrium Diagram Series, No. 2 (The Institute of Metals, London, 1944)

  19. N. Saunders, A.P. Miodownik, Bull. Alloy Phase Diagrams 11, 278 (1990)

    CAS  Google Scholar 

  20. J.-H. Shim, C.-S. Oh, Z. Metallkde. 87, 205 (1996)

    CAS  Google Scholar 

  21. R. Haddad, M. Gaune-Escard, J.-P. Bros, A. Ranninger-Havlicek, E. Hayer, K.L. Komarek, J. Alloys Comp. 247, 82 (1997)

    Article  CAS  Google Scholar 

  22. P. Nash, H. Choo, R.B. Schwarz, J. Mat. Sci. 33, 4949 (1998)

    Article  Google Scholar 

  23. G. Ghosh, Metall. Mater. Trans. 30A, 1481 (1999)

    Google Scholar 

  24. A. Leineweber, M. Ellner, E.J. Mittemeijer, J. Solid State Chem. 159, 191 (2001)

    Article  CAS  Google Scholar 

  25. A. Leineweber, O. Oeckler, U. Zachwieja, J. Solid State Chem. 177, 936 (2004)

    Article  CAS  Google Scholar 

  26. A. Leineweber, J. Solid State Chem. 177, 1197 (2004)

    Article  CAS  Google Scholar 

  27. J. Niemelä, G. Effenberg, K. Hack, P. Spencer, CALPHAD 10, 77 (1986)

    Article  Google Scholar 

  28. O. Teppo, J. Niemelä, P. Taskinen, Thermochim. Acta 173, 137 (1990)

    Article  CAS  Google Scholar 

  29. S.-W. Chen, H.-F. Hsu, Acta Materialia 52, 2541 (2004)

    Article  Google Scholar 

  30. G. Ghosh, J. Electron. Mater. 29, 1182 (2000)

    CAS  Google Scholar 

  31. S.-W. Chen, H.-F. Hsu, Ch.-W. Lin, J. Mater. Res. 19, 2267 (2004)

    Google Scholar 

  32. S.-W. Chen, C.-A. Chang, J. Electr. Mat. 33, 1071 (2004)

    CAS  Google Scholar 

  33. C.-A. Chang, S.-W. Chen, C.-N. Chiu, Y.-C. Huang, J. Electr. Mat. 34, 1135 (2005)

    CAS  Google Scholar 

  34. H. Flandorfer, J. Alloys Comp. 336, 176 (2002)

    Article  CAS  Google Scholar 

  35. I. Ansara, N. Dupin, in COST 507 Thermochemical database for light metal alloys, vol. 2 (European Commission DG XII, Luxembourg, 1998) p. 1

  36. N. Saunders, A.P. Miodownik, in “CALPHAD (Calculation of Phase Diagrams): A Comprehensive Guide” (Pergamon Press, Oxford, UK, 1998)

  37. J.M. Fiorani, C. Naguet, J. Hertz, A. Bourkba, L. Bouirden, Z. Metallkde. 88, 711 (1997)

    CAS  Google Scholar 

  38. F. Sommer, Z. Metallkde. 73, 72 (1982)

    CAS  Google Scholar 

  39. J.-F. Deneuville, C. Chatillon-Colinet, J.-C. Mathieu, E. Bonnier, J. Chim. Phys. 73, 273 (1976)

    CAS  Google Scholar 

  40. Y. Waseda, in The structure of non-crystalline materials (McGraw-Hill Inc., 1980), p. 56

  41. O.J. Kleppa. J. Phys. Chem. 60, 852 (1956)

    Article  CAS  Google Scholar 

  42. G.H. Lauri, A.W.H. Morris, J.N. Pratt, Trans. Met. Soc. 236, 1390 (1966)

    Google Scholar 

  43. O.J. Kleppa, Acta Metall. 3, 255 (1955)

    Article  CAS  Google Scholar 

  44. J.B. Cohen, J.S Leach, M.B Bever, J. Met. 6, 1257 (1954)

    CAS  Google Scholar 

  45. A. Gangulee, G.C. Das, M.B. Bever, Metall. Trans. 4, 2063 (1973)

    CAS  Google Scholar 

  46. B. Predel, W. Vogelbein, Thermochim. Acta 30, 201 (1979)

    Article  CAS  Google Scholar 

  47. F. Korber, W. Oelsen, Mitt. K. Wilhem Inst. Eisenforsch. Düsseldorf 19, 209 (1937)

    CAS  Google Scholar 

  48. H. Dannoehl, H.L. Lukas, Z. Metallkde. 65, 642 (1974)

    CAS  Google Scholar 

  49. A. Zemanova, J. Vrestal, A. Kroupa, Research in progress Masaryk University Bruno (2005)

  50. C. Colinet, A. Pasturel, Z. Metallkde. 89, 863 (1998)

    CAS  Google Scholar 

  51. P. Villars, A. Prince, H. Okamoto, in Handbook of Ternary Alloy Phase Diagrams (ASM International, Metals Park, Ohio, 1995)

  52. M.J. Pool, I. Arpshofen, B. Predel, E. Schultheiss, Z. Metallkde. 70, 656 (1979)

    CAS  Google Scholar 

  53. H.-T. Luo, S. W. Chen, J. Mater. Sci. 31, 5059 (1996)

    Article  CAS  Google Scholar 

  54. T.B. Massalski, J.L. Murray, L.H. Bennett, H. Baker, in “Binary Alloy Phase Diagrams” (ASM, Materials Park, Ohio, 1990)

  55. I. Kosovinc, M. El-Boragy, K. Schubert, Metall 26, 917 (1972)

    CAS  Google Scholar 

  56. I. Kosovinc, T. Grgasovic, Rud.-Metal. Zborn. 1, 71 (1972)

    Google Scholar 

  57. E. Hayer, Calorimetrie Analyse Thermique 26, 262 (1995)

    CAS  Google Scholar 

  58. S.D. Muzaffar, J. Chem. Soc. 123, 2341 (1923)

    CAS  Google Scholar 

  59. D.V. Malakhov, X.J. Liu, I. Ohnuma, K. Ishida, J. Phase Equil. 21, 514 (2000)

    Article  CAS  Google Scholar 

  60. N. Moelans, K.C. Hari Kumar, P. Wollants, J. Alloys Comp. 360, 98 (2003)

    Article  CAS  Google Scholar 

  61. W. Biltz, W. Wagner, H. Pieper, W. Holverscheit, Z. Anorg. Chem. 134, 25 (1924)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of the Austrian “Fonds zur Förderung der wissenschaftlichen Forschung (FWF)”, projects No. P-15620, P-16495 and P-17346. The financial support of the Hochschuljubilaeumsstiftung der Stadt Wien (Project No. H-812/2005) is also gratefully acknowledged. This research is a contribution to the European COST Action 531 on “Lead-free Solder Materials”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Ipser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ipser, H., Flandorfer, H., Luef, C. et al. Thermodynamics and phase diagrams of lead-free solder materials. J Mater Sci: Mater Electron 18, 3–17 (2007). https://doi.org/10.1007/s10854-006-9009-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-006-9009-3

Keywords

Navigation