Skip to main content
Log in

Brominated positions on graphene nanoribbon analyzed by infrared spectroscopy

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Determination of the number of bromo groups and brominated positions of edges on carbon materials is essential for selective functionalization because the brominated positions influence their electronic structures. However, the determination is challenging because the analysis of introduced bromo groups on carbon materials is conventionally limited to quantitative analysis by X-ray photoelectron spectroscopy. In this work, infrared spectra (IR) of brominated aromatic compounds were analyzed experimentally and theoretically using reference aromatic compounds to verify that the calculated peak positions can be used to estimate the experimental peak positions of brominated aromatic compounds. IR spectra of brominated graphene nanoribbons (GNRs) with zigzag, armchair, and other edges were simulated as one of the carbon materials with clear edge structures. Their characteristic peak positions and tendencies of shifts were explained from the point of view of Mulliken charge, C–H and C=C length, and orbital hybridization. As the number of Br on GNRs increased, the peak positions basically shifted further, indicating that the density of Br and introduced positions of Br can be estimated from IR spectra. The detailed assignments obtained in this work will lead to selective functionalization of carbon materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Similar content being viewed by others

References

  1. Castro AHN, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Mod Phys 81:109–162

    Article  Google Scholar 

  2. Candini A, Martini L, Chen Z, Mishra N, Convertino D, Coletti C et al (2017) High photoresponsivity in graphene nanoribbon field-effect transistor devices contacted with graphene electrodes. J Phys Chem C 121:10620–10625

    Article  CAS  Google Scholar 

  3. Chen YC, de Oteyza DG, Pedramrazi Z, Chen C, Fischer FR, Crommie MF (2013) Tuning the band gap of graphene nanoribbons synthesized from molecular precursors. ACS Nano 7:6123–6128

    Article  CAS  Google Scholar 

  4. Magda GZ, Jin X, Hagymási I, Vancsó P, Osváth Z, Nemes-Incze P et al (2014) Room-temperature magnetic order on zigzag edges of narrow graphene nanoribbons. Nature 514:608–611

    Article  CAS  Google Scholar 

  5. Merino-Díez N, Garcia-Lekue A, Carbonell-Sanromà E, Li J, Corso M, Colazzo L et al (2017) Width-dependent band gap in armchair graphene nanoribbons reveals Fermi level pinning on Au(111). ACS Nano 11:11661–11668

    Article  Google Scholar 

  6. Wagner P, Ewels CP, Adjizian JJ, Magaud L, Pochet P, Roche S et al (2013) Band gap engineering via edge-functionalization of graphene nanoribbons. J Phys Chem C 117:26790–26796

    Article  CAS  Google Scholar 

  7. Zheng H, Zheng JJ, He L, Zhao X (2014) Unique configuration of a nitrogen-doped graphene nanoribbon: potential applications to semiconductor and hydrogen fuel cell. J Phys Chem C 118:24723–24729

    Article  CAS  Google Scholar 

  8. Saikia I, Borah AJ, Phukan P (2016) Use of bromine and bromo-organic compounds in organic synthesis. Chem Rev 116:6837–7042

    Article  CAS  Google Scholar 

  9. Tasker SZ, Standley EA, Jamison TF (2014) Recent advances in homogeneous nickel catalysis. Nature 509:299–309

    Article  CAS  Google Scholar 

  10. Miyaura N, Yamada K, Suzuki A (1979) A new stereospecific cross-coupling by the palladium-catalyzed reaction of 1-alkenylboranes with 1-alkenyl or 1-alkynyl halides. Tetrahedron Lett 20:3437–3440

    Article  Google Scholar 

  11. Miyaura N, Suzuki A (1995) Palladium-catalyzed cross-coupling reactions of organoboron compounds. Chem Rev 95:2457–2483

    Article  CAS  Google Scholar 

  12. Cai J, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S et al (2010) Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 46:470–473

    Article  Google Scholar 

  13. Kim J, Yamada Y, Fujita R, Sato S (2015) Bromination of graphene with pentagonal, hexagonal zigzag and armchair, and heptagonal edges. J Mater Sci 50:5183–5190. https://doi.org/10.1007/s10853-015-9066-1

    Article  CAS  Google Scholar 

  14. Friedrich JF, Wettmarshausen S, Hanelt S, Mach R, Mix R, Zeynalov E et al (2010) Plasma-chemical Bromination of graphitic materials and its use for subsequent functionalization and grafting of organic molecules. Carbon 48:3884–3894

    Article  CAS  Google Scholar 

  15. Hanelt S, Friedrich JF, Orts-Gil G, Meyer-Plath A (2012) Study of Lewis acid catalyzed chemical bromination and bromoalkylation of multi-walled carbon nanotubes. Carbon 50:1373–1385

    CAS  Google Scholar 

  16. Mansour AE, Dey S, Amassian A (2015) Bromination of graphene: a new route to making high performance transparent conducting electrodes with low optical losses. ACS Appl Mater Interfaces 7:17692–17699

    Article  CAS  Google Scholar 

  17. Bulusheva LG, Okotrub AV, Flahaut E, Asanov IP, Gevko PN, Koroteev VO et al (2012) Bromination of double-walled carbon nanotubes. Chem Mater 24:2708–2715

    Article  CAS  Google Scholar 

  18. Sasaki T, Yamada Y, Sato S (2018) Quantitative analysis of zigzag and armchair edges on carbon materials with/without pentagons using infrared spectroscopy. Anal Chem 90:10724–10731

    Article  CAS  Google Scholar 

  19. Yamada Y, Gohda S, Abe K, Togo T, Shimano N, Sasaki T et al (2017) Carbon materials with controlled edge structures. Carbon 122:694–701

    Article  CAS  Google Scholar 

  20. Yamada Y, Kawai M, Yorimitsu H, Otsuka S, Takanashi M, Sato S (2018) Carbon materials with zigzag and armchair edges. ACS Appl Mater Interfaces 10:40710–40739

    Article  CAS  Google Scholar 

  21. Senda T, Yamada Y, Morimoto M, Nono N, Sogabe T, Kubo S et al (2019) Analyses of oxidation process for isotropic pitch-based carbon fiber using model compounds. Carbon 142:311–326

    Article  CAS  Google Scholar 

  22. Tommasini M, Lucotti A, Alfè M, Ciajolo A, Zerbi G (2016) Fingerprints of polycyclic aromatic hydrocarbons (PAHs) in infrared absorption spectroscopy. Spectrochim Acta A 152:134–148

    Article  CAS  Google Scholar 

  23. Russo C, Stanzione F, Tregrossi A, Ciajolo A (2014) Infrared spectroscopy of some carbon-based materials relevant in combustion: qualitative and quantitative analysis of hydrogen. Carbon 74:127–138

    Article  CAS  Google Scholar 

  24. Centrone A, Brambilla L, Renouard T, Gherghel L, Mathis C, Müllen K et al (2005) Structure of new carbonaceous materials: the role of vibrational spectroscopy. Carbon 43:1593–1609

    Article  CAS  Google Scholar 

  25. Zheng J, Liu HT, Wu B, Di CA, Guo YL, Wu T et al (2012) Production of graphite chloride and bromide using microwave sparks. Sci Rep 2:662

    Article  Google Scholar 

  26. Jankovský O, Šimek P, Klimová K, Sedmidubský D, Matějková S, Pumera M et al (2014) Towards graphene bromide: bromination of graphite oxide. Nanoscale 6:6065–6074

    Article  Google Scholar 

  27. He J, Bao F, Yan S, Weng F, Ma R, Liu Y, Ding H (2017) Soluble fluorene–benzothiadiazole polymer-grafted graphene for photovoltaic devices. RSC Adv 7:35950–35956

    Article  CAS  Google Scholar 

  28. Yao Y, Gao J, Bao F, Jiang S, Zhang X, Ma R (2015) Covalent functionalization of graphene with polythiophene through a Suzuki coupling reaction. RSC Adv 5:42754–42761

    Article  CAS  Google Scholar 

  29. Mooney EF (1963) The infrared spectra of chloro- and bromobenzene derivatives-I anisoles and phenetoles. Spectrochim Acta 19:877–887

    Article  CAS  Google Scholar 

  30. Fuente E, Menéndez A, Díez MA, Suárez D, Montes-Morán MA (2003) Infrared spectroscopy of carbon materials: a quantum chemical study of model compounds. J Phys Chem B 107:6350–6359

    Article  CAS  Google Scholar 

  31. Karlický F, Datta KKR, Otyepka M, Zbořil R (2013) Halogenated graphenes: rapidly growing family of graphene derivatives. ACS Nano 7:6434–6464

    Article  Google Scholar 

  32. Palafox AP (2017) Computational chemistry applied to vibrational spectroscopy: a tool for characterization of nucleic acid bases and some of their 5-substituted derivatives. Phys Sci Rev 20160132.

  33. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, et al. (2009) Gaussian 09, revision E.01; Gaussian, Inc., Wallingford CT.

  34. Pein BC, Seong NH, Dlott DD (2010) Vibrational energy relaxation of liquid aryl-halides X-C6H5 (X = F, Cl, Br, I). J Phys Chem A 114:10500–10507

    Article  CAS  Google Scholar 

  35. Larkin PJ (2011) Infrared and Raman spectroscopy principles and spectral interpretation. Elsevier Inc., Amsterdam, pp 10–132

    Google Scholar 

  36. Colthup NB, Daly LH, Wiberley SE (1990) Introduction to infrared and Raman spectroscopy. Academic Press, Massachusetts, pp 261–279

    Book  Google Scholar 

  37. Yamada Y, Matsuo S, Abe K, Kubo S, Sato S (2016) Selective doping of nitrogen into carbon materials without catalysts. J Mater Sci 51:8900–8915. https://doi.org/10.1007/s10853-016-0142-y

    Article  CAS  Google Scholar 

  38. Kim J, Lee N, Nodo M, Min YH, Noh SH, Kim N (2018) Distinguishing zigzag and armchair edges on graphene nanoribbons by X-ray photoelectron and Raman spectroscopies. ACS Omega 3:17789–17796

    Article  CAS  Google Scholar 

  39. Eckmann A, Felten A, Mishchenko A, Britnell L, Krupke R, Novoselov KS et al (2012) Probing the nature of defects in graphene by Raman spectroscopy. Nano Lett 12:3925–3930

    Article  CAS  Google Scholar 

  40. Schaffer HE, Chance RR, Silbey RJ, Knoll K, Schrock RR (1991) Conjugation length dependence of Raman scattering in a series of linear polyenes: implications for polyacetylene. J Chem Phys 94:4161–4170

    Article  CAS  Google Scholar 

  41. Yamada Y, Murota K, Fujita R, Kim J, Watanabe A, Nakamura M et al (2014) Subnanometer vacancy defects introduced on graphene by oxygen gas. J Am Chem Soc 136:2232–2235

    Article  CAS  Google Scholar 

  42. McKean DC (1978) Individual CH bond strengths in simple organic compounds: effects of conformation and substitution. Chem Soc Rev 7:399–422

    Article  CAS  Google Scholar 

  43. McKean DC (1984) New light on the stretching vibrations, lengths and strengths of CH, SiH and GeH bonds. J Mol Struct 113:251–266

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Kondo Memorial Foundation in Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhiro Yamada.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 10786 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamada, Y., Masaki, S. & Sato, S. Brominated positions on graphene nanoribbon analyzed by infrared spectroscopy. J Mater Sci 55, 10522–10542 (2020). https://doi.org/10.1007/s10853-020-04786-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-04786-1

Navigation