Skip to main content
Log in

Hydrothermal syntheses, structures and magnetic properties of coordination frameworks of divalent transition metals

  • Novel Routes of Advanced Materials Processing and Applications
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The hydrothermal syntheses, single-crystal X-ray structures and magnetic properties of [Co(C4O4)(H2O)2] (1), [Co3(OH)2(C4O4)2] · 3H2O (2) and [Fe(OH)2(C4O4)] (3) are described. Pale yellow cubes of 1 and brown red crystals of 2 were obtained from the reaction of Co(OH)2 and squaric acid at 200 °C. Brown needle of 3 were obtained similarly from Fe(SO4) · 7H2O, squaric acid and NaOH. 1 consists of a cubic sodalite arrangement with empty cavities where the Co atoms are connected by μ4-squarate and two trans-water molecules each, while 2 and 3 contain metal-hydroxide double-chains of edge-sharing octahedral, brucite-type for 2 and goethite for 3, connected by μ6-squarate. 2 contains water molecules in the channels which can be removed and re-inserted repeatedly without loss of crystallinity. All three compounds possess 3D frameworks made up of coordination and hydrogen bonds. 1 behaves as a paramagnet while 2 and 3 are antiferromagnets and 2 transforms to a ferromagnet reversibly upon dehydration and rehydration. The structures of two one-dimensional polymers employing 2,5-pyridinedicarboxylate, [Co2(H2O)6(2,5-pydc)2] · 2H2O (4) and Cu(2,5-pydc)2 (5), are also reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kitagawa S, Kitaura R, Noro S (2004) Angew Chem Int Ed 43:2334

    Article  CAS  Google Scholar 

  2. Kepert CJ (2006) Chem Commun 695

  3. Day P, Kurmoo M (1997) J Mater Chem 7:1291

    Article  CAS  Google Scholar 

  4. Kobayashi H, Sato A, Arai E, Akutsu H, Kobayashi A, Cassoux P (1997) J Am Chem Soc 119:12392

    Article  CAS  Google Scholar 

  5. Halder GJ, Kepert CJ, Moubaraki B, Murray KS, Cashion JD (2002) Science 298:1762

    Article  CAS  Google Scholar 

  6. Kurmoo M, Graham AW, Day P, Coles SJ, Hursthouse MB, Caulfield JL, Singleton J, Francis JP, Hayes W, Ducasse L, Guionneau P (1995) J Am Chem Soc 117:12209

    Article  CAS  Google Scholar 

  7. Mori W, Takamizawa S (2000) J Solid State Chem 152:120

    Article  CAS  Google Scholar 

  8. Kitagawa S, Kondo M (1998) Bull Chem Soc Jpn 71:1739

    Article  CAS  Google Scholar 

  9. Biradha K, Fujita M (2002) Angew Chem Int Ed 41:3392

    Article  CAS  Google Scholar 

  10. Wang Z-M, Zhang B, Fujiwara H, Kobayashi H, Kurmoo M (2004) Chem Commun 416

  11. Yamada K, Yagishita S, Tanaka H, Tohyama K, Adachi K, Kaizaki S, Kumagai H, Inoue K, Kitaura R, Chang H-C, Kitagawa S, Kawata S (2004) Chem Eur J 10:1

    Article  CAS  Google Scholar 

  12. Kurmoo M, Kumagai H, Green MA, Lovett BW, Blundell SJ, Ardavan A (2001) J Solid State Chem 159:343

    Article  CAS  Google Scholar 

  13. Kumagai H, Oka Y, Tanaka M-A, Inoue K (2002) Inorg Chim Acta 332:176

    Article  CAS  Google Scholar 

  14. Kumagai H, Chapmann KM, Kepert CJ, Kurmoo M (2003) Polyhedron 22:1921

    Article  CAS  Google Scholar 

  15. Kumagai H, Kepert CJ, Kurmoo M (2002) Inorg Chem 41:3410

    Article  CAS  Google Scholar 

  16. Rujiwatra A, Kepert CJ, Claridge JB, Rosseinsky MJ, Kumagai H, Kurmoo M (2001) J Am Chem Soc 123:10584

    Article  CAS  Google Scholar 

  17. Kumagai H, Oka Y, Inoue K, Kurmoo M (2002) J Chem Soc Dalton Trans 3442

  18. Kumagai H, Ohba M, Inoue K, Okawa H (2002) Chem Lett 1006

  19. Kumagai H, Akita-Tanaka M, Kawata S, Inoue K (2005) Chem Lett 526

  20. Kurmoo M, Kumagai H (2002) Mol Cryst Liq Cryst 397:555

    Google Scholar 

  21. Kumagai H, Oka Y, Inoue K, Kurmoo M (2004) J Phys Chem Solid 65:55

    Article  CAS  Google Scholar 

  22. Kurmoo M, Kumagai H, Hughes SM, Kepert CJ (2003) Inorg Chem 42:6709

    Article  CAS  Google Scholar 

  23. Kumagai H, Akita-Tanaka M, Inoue K, Kurmoo M (2001) J Mater Chem 11:2146

    Article  CAS  Google Scholar 

  24. (a) Kumagai H, Inoue K, Kurmoo M (2002) Bull Chem Soc Jpn 75:1282 (b) Kurmoo M, Estournes C, Oka Y, Kumagai H, Inoue K (2005) Inorg Chem 44:217

  25. Kurmoo M (1999) Chem Mater 11:3370

    Article  CAS  Google Scholar 

  26. Kurmoo M (1999) Phil Trans A 357:3041

    Article  CAS  Google Scholar 

  27. Kurmoo M (1999) J Mater Chem 9:2595

    Article  CAS  Google Scholar 

  28. Kurmoo M, Kumagai H, Akita-Tanaka M, Inoue K, Takagi S (2006) Inorg Chem 45:1627

    Article  CAS  Google Scholar 

  29. Kurmoo M, Kumagai H, Chapman KW, Kepert CJ (2006) Chem Commun 3012

  30. Robl C, Weiss A (1986) Z Naturforsch 41B:1341

    CAS  Google Scholar 

  31. Kawata S, Kitagawa S, Kumagai H, Ishiyma T, Honda K, Tobita H, Adachi K, Katada M (1998) Chem Mater 10:3902

    Article  CAS  Google Scholar 

  32. Gutschke SOH, Molinier M, Powell AK, Wood PW (1997) Angew Chem Int Ed 36:991

    Article  CAS  Google Scholar 

  33. Lee C-R, Wang C-C, Chen K-C, Lee G, Wang YJ (1999) Phys Chem A103:156

    Google Scholar 

  34. Yaghi OM, Li G, Groy TL (1995) J Chem Soc Dalton Trans

  35. Weiss A, Riegler E, Alt I, Bohme H, Robl CZ (1986) Naturforsch 41B:18

    CAS  Google Scholar 

  36. Yufit DS, Price DJ, Howard JAK, Gutschke SOH, Powell AK, Wood PT (1999) Chem Commun 1561

  37. Hagrman PJ, Hagrman D, Zubieta J (1999) Angew Chem Int Ed 38:2638

    Article  Google Scholar 

  38. Gutschke SOH, Molinier M, Powell AK, Wood PW (1997) Angew Chem Int Ed Engl 36:991

    Article  CAS  Google Scholar 

  39. Lin KJ, Lii KH (1997) Angew Chem Int Ed Engl 36:2076

    Article  CAS  Google Scholar 

  40. Sheldrick GM (1985) Crystallographic computing 3. Oxford University Press

Download references

Acknowledgement

This work was funded by the CNRS-France, Ministry of Education, Science, Sports, and Culture, Japan. H.K. thanks the JSPS for a Young Scientist Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hitoshi Kumagai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumagai, H., Sobukawa, H. & Kurmoo, M. Hydrothermal syntheses, structures and magnetic properties of coordination frameworks of divalent transition metals. J Mater Sci 43, 2123–2130 (2008). https://doi.org/10.1007/s10853-007-2033-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-007-2033-8

Keywords

Navigation