Skip to main content
Log in

Sorption onto crosslinked cyclodextrin polymers for industrial pollutants removal: an interesting environmental approach

  • Original article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

An insoluble polymeric network containing cyclodextrins (CDs) and amino, hydroxyl and carboxylic groups, was used for the detoxification of multicontaminated wastewaters. The comparison of its sorption capacity with that of a similarly prepared starch material showed superior efficiency towards organic compounds, though maintaining the same efficiency towards inorganic species. The incorporation of cyclodextrin cavity into a solid network provides an easy separation of pollutants from water, after their uptake onto the sorbent surface. In fact, the presence of CDs ensures the formation of inclusion complexes enhancing the sorption properties. The proposed sorbent also shows good sorption capacity for cations and other inorganic compounds, which is mandatory for the treatment of multicontaminated wastewaters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Crini, G., Badot, P.M.: Traitement et épuration des eaux industrielles polluées. PUFC, Besançon (2007)

    Google Scholar 

  2. Shanker, A.K., Cervantes, C., Loza-Tavera, H., Avudainayagam, S.: Chromium toxicity in plants. Environ. Int. 31, 739–753 (2005)

    Article  CAS  Google Scholar 

  3. Fjällborg, B., Li, B., Nilsson, E., Dave, G.: Toxicity identification evaluation of five metals performed with two organisms (Daphnia magna and Lactuca sativa). Arch. Environ. Contam. Toxicol. 50, 196–204 (2006)

    Article  Google Scholar 

  4. Arambašic, M.B., Bielić, S., Subakov, G.: Acute toxicity of heavy metals (copper, lead, zinc), phenol and sodium on Allium cepa L., Lepidium sativum L. and Daphnia magna St.: comparative investigations and the practical applications. Water Res. 29, 497–503 (1995)

    Article  Google Scholar 

  5. An, Y.-J., Kim, Y.-M., Kwon, T.-I., Jeong, S.-W.: Combined effect of copper, cadmium, and lead upon Cucumis sativus growth and bioaccumulation. Sci. Total Environ. 326, 85–93 (2004)

    Article  CAS  Google Scholar 

  6. Li, W., Khan, A., Yamaguchi, S., Kamiya, Y.: Effects of heavy metals on seed germination and early seedling growth on Arabidopsis thaliana. Plant Growth Regul. 46, 45–50 (2005)

    Article  CAS  Google Scholar 

  7. Di Salvatore, M., Carafa, A.M., Carratù, G.: Assessment of heavy metals phytotoxicity using seed germination and root elongation tests: a comparison of two growth substrates. Chemosphere 73, 1461–1464 (2008)

    Article  Google Scholar 

  8. Fresner, J., Schnitzer, H., Gwehenberger, G., Planasch, M., Brunner, C., Taferner, K., Mair, J.: Practical experiences with the implementation of the concept of zero emissions in the surface treatment industry in Austria. J. Clean. Prod. 15, 1228–1239 (2007)

    Article  Google Scholar 

  9. Sancey, B., Morin-Crini, N., Lucas, L.F., Minary, J.F., Badot, P.M., Crini, G.: Biosorption on crosslinked starch for metal removal from industrial effluents. J. Water Sci. (in press)

  10. Chen, G.: Electrochemical technologies in wastewater treatment. Sep. Purif. Technol. 38, 11–41 (2004)

    Article  Google Scholar 

  11. Manu, V., Mody, H.M., Bajaj, H.C., Jasra, R.V.: Adsorption of Cu2+ on amino functionalized silica gel with different loading. Ind. Eng. Chem. Res. 48, 8954–8960 (2009)

    Article  CAS  Google Scholar 

  12. Sirkar, K.K.: Membranes, phase interfaces, and separations: novel techniques and membranes—an overview. Ind. Eng. Chem. Res. 47, 5250–5266 (2008)

    Article  CAS  Google Scholar 

  13. De Gisi, S., Galasso, M., De Feo, G.: Treatment of tannery wastewater through the combination of a conventional activated sludge process and reverse osmosis with a plane membrane. Desalination 249, 337–342 (2009)

    Article  Google Scholar 

  14. Panayatova, M., Dimova-Todorova, M., Dobrevsky, I.: Purification and reuse of heavy metals containing wastewaters from electroplating plants. Desalination 206, 135–140 (2007)

    Article  Google Scholar 

  15. Sepehrian, H., Fasihi, J., Khayatzadeh Mahani, M.: Adsorption behavior studies of picric acid on mesoporous MCM-41. Ind. Eng. Chem. Res. 48, 6772–6775 (2009)

    Article  CAS  Google Scholar 

  16. Mouedhen, G., Feki, M., De Petris-Wery, M., Ayedi, H.F.: Electrochemical removal of Cr(VI) from aqueous media using iron and aluminum as electrode materials: towards a better understanding of the involved phenomena. J. Hazard. Mater. 168, 983–991 (2009)

    Article  CAS  Google Scholar 

  17. Aravindhan, R., Madhan, B., Rao, J.R., Nair, B.U., Ramasami, T.: Bioaccumulation of chromium from tannery wastewater: an approach for chrome recovery and reuse. Environ. Sci. Technol. 38, 300–306 (2004)

    Article  CAS  Google Scholar 

  18. Sun, J.-M., Li, F., Huang, J.-C.: Optimum pH for Cr6+ co-removal with mixed Cu2+, Zn2+, and Ni2+ precipitation. Ind. Eng. Chem. Res. 45, 1557–1562 (2006)

    Article  CAS  Google Scholar 

  19. Ku, Y., Jung, I.-L.: Photocatalytic reduction of Cr(VI) in aqueous solutions by UV irradiation with the presence of titanium dioxide. Water Res. 35, 135–142 (2001)

    Article  CAS  Google Scholar 

  20. Ajouyed, O., Hurel, C., Ammari, M., Allal, L.B., Marmier, N.: Sorption of Cr(VI) onto natural iron aluminum (oxy)hydroxides: effects of pH, ionic strength and initial concentration. J. Hazard. Mater. 174, 616–622 (2010)

    Article  CAS  Google Scholar 

  21. Winterhalter, D.: Cyclodextrins—smart enablers in your daily life. In: 15th International Cyclodextrin Symposium, Vienna, 9–12 May 2010

  22. Sueishi, Y., Inazumi, N., Hanaya, T.: NMR spectroscopic characterization of inclusion complexes of hydroxy-substituted naphtalenes with native and modified β-cyclodextrins. J. Incl. Phenom. Macrocycl. Chem. 64, 135–141 (2009)

    Article  CAS  Google Scholar 

  23. Al-Rawashdeh, N.A.F., Al-Ajdouni, A.M., Bataineh, N.: Activation of H2O2 by methyltrioxorhenium(VII) inside β-cyclodextrin. In: 15th International Cyclodextrin Symposium, Vienna, 9–12 May 2010

  24. Villaverde, J., Maqueda, C., Morillo, E.: Effect of the simultaneous addition of β-Cyclodextrin and the herbicide Norflurazon on its adsorption and movement in soils. J. Agric. Food Chem. 54, 4766–4772 (2006)

    Article  CAS  Google Scholar 

  25. Fenyvesi, E., Ujhazy, A., Szejtli, J., Putter, S., Gan, T.G.: Controlled release of drugs from CD polymers substituted with ionic groups. J. Inclus. Phenom. Mol. 25, 185–189 (1996)

    Article  CAS  Google Scholar 

  26. Gaffar, M.A., El-Rafie, S.M., El-Tahlawy, K.F.: Preparation and utilization of ionic exchange resin via graft copolymerization of beta-CD itaconate with chitosan. Carbohydr. Polym. 56, 387–396 (2004)

    Article  CAS  Google Scholar 

  27. Crini, G., Peindy, H.N.: Adsorption of C. I. Basic Blue 9 on cyclodextrin-based material containing carboxylic groups. Dyes Pigments 70, 204–211 (2006)

    Article  CAS  Google Scholar 

  28. Zhao, D., Zhao, L., Zhu, C.S., Shen, X.Y., Zhang, X.Z., Sha, B.F.: Comparative study of polymer containing beta-cyclodextrin and -COOH for adsorption toward aniline, 1-naphtylamine and methylamine blue. J. Hazard. Mater. 171, 241–246 (2009)

    Article  CAS  Google Scholar 

  29. Ducoroy, L., Bacquet, M., Martel, B., Morcellet, M.: Removal of heavy metals from aqueous media by cation exchange nonwoven PET coated with beta-cyclodextrin-polycarboxylic moieties. React. Funct. Polym. 68, 594–600 (2008)

    Article  CAS  Google Scholar 

  30. Wenz, G., Thiele, C., Witti, S., Wang, H.: Synthesis of cyclodextrin derivatives with improved binding abilities. In: 15th International Cyclodextrin Symposium, Vienna, 9–12 May 2010

  31. Crini, G.: Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Prog. Polym. Sci. 30, 38–70 (2005)

    Article  CAS  Google Scholar 

  32. Crini, G. Method for making a gel-type compound for treating effluent. French Patent PCT/FR2006/050549, WO 2006/134299

  33. Saha, S.: Treatment of aqueous effluent for fluoride. Water Res. 27, 1347–1350 (1993)

    Article  CAS  Google Scholar 

  34. Mohapatra, M., Anand, S., Mishra, B.K., Giles, D.E., Singh, P.: Review of fluoride removal from drinking water. J. Environ. Manage. 91, 67–77 (2009)

    Article  CAS  Google Scholar 

  35. Aldaco, R., Garea, A., Irabien, A.: Fluoride recovery in a fluidized bed: crystallization of calcium fluoride on silica sand. Ind. Eng. Chem. Res. 45, 796–802 (2006)

    Article  CAS  Google Scholar 

  36. Greenwood, N.N., Earnshaw, A.: Chemistry of the Elements. Elsevier, Amsterdam (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Crini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sancey, B., Trunfio, G., Charles, J. et al. Sorption onto crosslinked cyclodextrin polymers for industrial pollutants removal: an interesting environmental approach. J Incl Phenom Macrocycl Chem 70, 315–320 (2011). https://doi.org/10.1007/s10847-010-9841-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-010-9841-1

Keywords

Navigation