Skip to main content

Advertisement

Log in

Role of DNA methylation in imprinting disorders: an updated review

  • Review
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Genomic imprinting is a complex epigenetic process that contributes substantially to embryogenesis, reproduction, and gametogenesis. Only small fraction of genes within the whole genome undergoes imprinting. Imprinted genes are expressed in a monoallelic parent-of-origin-specific manner, which means that only one of the two inherited alleles is expressed either from the paternal or maternal side. Imprinted genes are typically arranged in clusters controlled by differentially methylated regions or imprinting control regions. Any defect or relaxation in imprinting process can cause loss of imprinting in the key imprinted loci. Loss of imprinting in most cases has a harmful effect on fetal development and can result in neurological, developmental, and metabolic disorders. Since DNA methylation and histone modifications play a key role in the process of imprinting. This review focuses on the role of DNA methylation in imprinting process and describes DNA methylation aberrations in different imprinting disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

DMRs:

differentially methylated regions

ICR:

imprinting control region

IGF2:

insulin-like growth factor 2

UPD:

uniparental disomy

ER:

epigenetic reprogramming

ART:

assisted reproductive technology

MLID:

multi-locus imprinting disturbances

TNDM:

transient neonatal diabetes mellitus

PWS:

Prader–Willi syndrome

SRS:

Silver–Russell syndrome

PHP1b:

pseudohypoparathyroidism type 1b

AS:

Angelman syndrome

References

  1. Feil R, Berger F. Convergent evolution of genomic imprinting in plants and mammals. Trends Genet. 2007;23(4):192–9.

    Article  CAS  PubMed  Google Scholar 

  2. Chao W. Genomic imprinting. Handb Epigenetics. 2011; p. 353–79.

  3. Mcewen KR, Ferguson-smith AC. Genomic imprinting—a model for roles of histone modifications in epigenetic control. Epigenomics. 2009; p. 235–58. Available from: http://www.springerlink.com/index/10.1007/978-1-4020-9187-2

  4. Maupetit-Méhouas S, Montibus B, Nury D, Tayama C, Wassef M, Kota SK, et al. Imprinting control regions (ICRs) are marked by mono-allelic bivalent chromatin when transcriptionally inactive. Nucleic Acids Res. 2016;44:621–35.

    Article  PubMed  CAS  Google Scholar 

  5. Renfree MB, Suzuki S, Kaneko-Ishino T. The origin and evolution of genomic imprinting and viviparity in mammals. Philos Trans R Soc Lond B Biol Sci. [Internet]. 2013;368:20120151. Available from: http://europepmc.org/articles/PMC3539366

  6. Rougeulle C, Glatt H, Lalande M. The Angelman syndrome candidate gene, UBE3A/E6-AP, is imprinted in brain. Nat Genet. 1997;17:14–5.

    Article  CAS  PubMed  Google Scholar 

  7. Lalande M, Calciano MA. Molecular epigenetics of Angelman syndrome. Cell Mol Life Sci. 2007; p. 947–60.

  8. Bastepe M. The GNAS locus and pseudohypoparathyroidism. Adv Exp Med Biol. 2008; p. 27–40.

  9. Wilkinson LS, Davies W, Isles AR. Genomic imprinting effects on brain development and function. Nat Rev Neurosci. 2007;8:832–43. Available from: http://www.nature.com/nrn/journal/v8/n11/full/nrn2235.html

    Article  CAS  PubMed  Google Scholar 

  10. Iglesias-Platas I, Court F, Camprubi C, Sparago A, Guillaumet-Adkins A, Martin-Trujillo A, et al. Imprinting at the PLAGL1 domain is contained within a 70-kb CTCF/cohesin-mediated non-allelic chromatin loop. Nucleic Acids Res. 2013;41:2171–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Baran Y, Subramaniam M, Biton A, Tukiainen T, Tsang EK, Rivas MA, et al. The landscape of genomic imprinting across diverse adult human tissues. Genome Res. 2015;25:927–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Babak T, DeVeale B, Tsang EK, Zhou Y, Li X, Smith KS, et al. Genetic conflict reflected in tissue-specific maps of genomic imprinting in human and mouse. Nat Genet. [Internet]. NIH Public Access; 2015; [cited 2017 Feb 13];47:544–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25848752

  13. Messerschmidt DM, Knowles BB, Solter D. DNA methylation dynamics during epigenetic reprogramming in the germline and preimplantation embryos. Genes Dev. 2014:812–28.

  14. Ferguson-Smith AC. Genomic imprinting: the emergence of an epigenetic paradigm. Nat Rev Genet. 2011;12:565–75. Available from: http://dx.doi.org/10.1038/nrg3032

    Article  CAS  PubMed  Google Scholar 

  15. Cantone I, Fisher AG. Epigenetic programming and reprogramming during development. Nat Struct Mol Biol. 2013;20:282–9.

  16. Morgan HD, Santos F, Green K, Dean W, Reik W. Epigenetic reprogramming in mammals. Hum. Mol. Genet. 2005.

  17. Seisenberger S, Peat JR, Hore TA, Santos F, Dean W, Reik W. Reprogramming DNA methylation in the mammalian life cycle: building and breaking epigenetic barriers. Philos Trans R Soc Lond Ser B Biol Sci. 2013;368:20110330. Available from: http://rstb.royalsocietypublishing.org/content/368/1609/20110330.long

    Article  CAS  Google Scholar 

  18. Marcho C, Cui W, Mager J. Epigenetic dynamics during preimplantation development. Reproduction. 2015;150:R109–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Paczkowski M, Schoolcraft WB, Krisher RL. Dysregulation of methylation and expression of imprinted genes in oocytes and reproductive tissues in mice of advanced maternal age. J Assist Reprod Genet. 2015;32:713–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Elhamamsy AR. DNA methylation dynamics in plants and mammals: overview of regulation and dysregulation. Cell Biochem Funct. 2016;34(5):289–98.

    Article  CAS  PubMed  Google Scholar 

  21. Sha K. A mechanistic view of genomic imprinting. Annu Rev Genomics Hum Genet. 2008;9:197–216.

    Article  CAS  PubMed  Google Scholar 

  22. Sleutels F, Zwart R, Barlow DP. The non-coding Air RNA is required for silencing autosomal imprinted genes. Nature. 2002;415:810–3.

    Article  CAS  PubMed  Google Scholar 

  23. Royo H, Cavaillé J. Non-coding RNAs in imprinted gene clusters. Biol Cell. 2008;100:149–66.

    Article  CAS  PubMed  Google Scholar 

  24. Pandey RR, Mondal T, Mohammad F, Enroth S, Redrup L, Komorowski J, et al. Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol Cell. 2008;32:232–46.

    Article  CAS  PubMed  Google Scholar 

  25. Chiesa N, De Crescenzo A, Mishra K, Perone L, Carella M, Palumbo O, et al. The KCNQ1OT1 imprinting control region and non-coding RNA: new properties derived from the study of Beckwith-Wiedemann syndrome and Silver-Russell syndrome cases. Hum Mol Genet. 2012;21:10–25.

    Article  PubMed  CAS  Google Scholar 

  26. Brockdorff N. Noncoding RNA and Polycomb recruitment. RNA. 2013;19:429–42. Available from: http://rnajournal.cshlp.org/content/19/4/429.abstract?ijkey=96122606059453c4caaee4fd55f29f8977412c5c&keytype2=tf_ipsecsha

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Higashimoto K, Soejima H, Saito T, Okumura K, Mukai T. Imprinting disruption of the CDKN1C/KCNQ1OT1 domain: the molecular mechanisms causing Beckwith-Wiedemann syndrome and cancer. Cytogenet Genome Res. 2006; p. 306–12.

  28. Ulaner GA, Yang Y, Hu JF, Li T, Vu TH, Hoffman AR. CTCF binding at the insulin-like growth factor-II (IGF2)/H19 imprinting control region is insufficient to regulate IGF2/H19 expression in human tissues. Endocrinology. 2003;144:4420–6.

    Article  CAS  PubMed  Google Scholar 

  29. Beygo J, Citro V, Sparago A, De Crescenzo A, Cerrato F, Heitmann M, et al. The molecular function and clinical phenotype of partial deletions of the IGF2/H19 imprinting control region depends on the spatial arrangement of the remaining CTCF-binding sites. Hum Mol Genet. 2013;22:544–57.

    Article  CAS  PubMed  Google Scholar 

  30. Demars J, Gicquel C. Epigenetic and genetic disturbance of the imprinted 11p15 region in Beckwith-Wiedemann and Silver-Russell syndromes. Clin Genet. 2012; p. 350–61.

  31. Jacob K, Robinson WP, Lefebvre L. Beckwith-Wiedemann and Silver-Russell syndromes: opposite developmental imbalances in imprinted regulators of placental function and embryonic growth. Clin Genet. 2013;84:326–34.

    Article  CAS  PubMed  Google Scholar 

  32. Rancourt RC, Harris HR, Barault L, Michels KB. The prevalence of loss of imprinting of H19 and IGF2 at birth. FASEB J. 2013;27:3335–43. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23620526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Horsthemke B. In brief: genomic imprinting and imprinting diseases. J Pathol. 2014;232:485–7.

    Article  CAS  PubMed  Google Scholar 

  34. Wilkins JF, Úbeda F. Diseases associated with genomic imprinting. Prog Mol Biol Transl Sci. 2011;101:401–45.

    Article  CAS  PubMed  Google Scholar 

  35. Yamazawa K, Ogata T, Ferguson-Smith AC. Uniparental disomy and human disease: an overview. Am J Med Genet Part C Semin Med Genet. 2010; p. 329–34.

  36. Horsthemke B. Mechanisms of imprint dysregulation. Am. J. Med. Genet. Part C Semin. Med. Genet. 2010. p. 321–8.

  37. Delaval K, Wagschal A, Feil R. Epigenetic deregulation of imprinting in congenital diseases of aberrant growth. BioEssays. 2006; p. 453–9.

  38. Amor DJ, Halliday J. A review of known imprinting syndromes and their association with assisted reproduction technologies. Hum. Reprod. 2008. p. 2826–34.

  39. Iliadou AN, Janson PCJ, Cnattingius S. Epigenetics and assisted reproductive technology. J Intern Med. 2011; p. 414–20.

  40. Owen CM, Segars JH. Imprinting disorders and assisted reproductive technology. Semin Reprod Med. 2010;27:417–28. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20962636

    Article  CAS  Google Scholar 

  41. Lazaraviciute G, Kauser M, Bhattacharya S, Haggarty P, Bhattacharya S. A systematic review and meta-analysis of DNA methylation levels and imprinting disorders in children conceived by IVF/ICSI compared with children conceived spontaneously. Hum Reprod Update. 2014;20:840–52.

    Article  PubMed  Google Scholar 

  42. MacKay DJG, Eggermann T, Buiting K, Garin I, Netchine I, Linglart A, et al. Multilocus methylation defects in imprinting disorders. Biomol Concepts. 2015:47–57.

  43. Sanchez-Delgado M, Riccio A, Eggermann T, Maher ER, Lapunzina P, Mackay D, et al. Causes and consequences of multi-locus imprinting disturbances in humans. Trends Genet. 2016. p. 444–55.

  44. Arima T, Kamikihara T, Hayashida T, Kato K, Inoue T, Shirayoshi Y, et al. ZAC, LIT1 (KCNQ1OT1) and p57KIP2 (CDKN1C) are in an imprinted gene network that may play a role in Beckwith–Wiedemann syndrome. Nucleic Acids Res. 2005;33:2650–60.

  45. Mackay DJG, Boonen SE, Clayton-Smith J, Goodship J, Hahnemann JMD, Kant SG, et al. A maternal hypomethylation syndrome presenting as transient neonatal diabetes mellitus. Hum Genet. 2006;120:262–9.

    Article  CAS  PubMed  Google Scholar 

  46. Bliek J, Verde G, Callaway J, Maas SM, De Crescenzo A, Sparago A, et al. Hypomethylation at multiple maternally methylated imprinted regions including PLAGL1 and GNAS loci in Beckwith-Wiedemann syndrome. Eur J Hum Genet. 2009;17:611–9. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2986258&tool=pmcentrez&rendertype=abstract

    Article  CAS  PubMed  Google Scholar 

  47. Court F, Martin-Trujillo A, Romanelli V, Garin I, Iglesias-Platas I, Salafsky I, et al. Genome-wide allelic methylation analysis reveals disease-specific susceptibility to multiple methylation defects in imprinting syndromes. Hum Mutat. 2013;34:595–602.

    CAS  PubMed  Google Scholar 

  48. Perez-Nanclares G, Romanelli V, Mayo S, Garin I, Zazo C, Fernandez-Rebollo E, et al. Detection of hypomethylation syndrome among patients with epigenetic alterations at the GNAS locus. J Clin Endocrinol Metab. 2012;97.

  49. Rossignol S, Steunou V, Chalas C, Kerjean A, Rigolet M, Viegas-Pequignot E, et al. The epigenetic imprinting defect of patients with Beckwith-Wiedemann syndrome born after assisted reproductive technology is not restricted to the 11p15 region. J Med Genet. 2006;43:902–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Boonen SE, Mackay DJG, Hahnemann JMD, Docherty L, Gronskov K, Lehmann A, et al. Transient neonatal diabetes, ZFP57, and hypomethylation of multiple imprinted loci. Diabetes Care. 2013;36:505–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mackay DJG, Hahnemann JMD, Boonen SE, Poerksen S, Bunyan DJ, White HE, et al. Epimutation of the TNDM locus and the Beckwith-Wiedemann syndrome centromeric locus in individuals with transient neonatal diabetes mellitus. Hum Genet. 2006;119:179–84.

    Article  CAS  PubMed  Google Scholar 

  52. Gardner RJ, Mackay DJ, Mungall AJ, Polychronakos C, Siebert R, Shield JP, et al. An imprinted locus associated with transient neonatal diabetes mellitus. Hum Mol Genet. 2000;9:589–96.

    Article  CAS  PubMed  Google Scholar 

  53. Mackay DJ, Callaway JL, Marks SM, White HE, Acerini CL, Boonen SE, et al. Hypomethylation of multiple imprinted loci in individuals with transient neonatal diabetes is associated with mutations in ZFP57. Nat Genet. 2008;40:949–51. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18622393

    Article  CAS  PubMed  Google Scholar 

  54. Gicquel C, Rossignol S, Cabrol S, Houang M, Steunou V, Barbu V, et al. Epimutation of the telomeric imprinting center region on chromosome 11p15 in Silver-Russell syndrome. Nat Genet. 2005;37:1003–7.

    Article  CAS  PubMed  Google Scholar 

  55. Netchine I, Rossignol S, Dufourg MN, Azzi S, Rousseau A, Perin L, et al. Brief report: 11p15 imprinting center region 1 loss of methylation is a common and specific cause of typical Russell-Silver syndrome: clinical scoring system and epigenetic-phenotypic correlations. J Clin Endocrinol Metab. 2007;92:3148–54.

    Article  CAS  PubMed  Google Scholar 

  56. Bullman H, Lever M, Robinson DO, Mackay DJG, Holder SE, Wakeling EL. Mosaic maternal uniparental disomy of chromosome 11 in a patient with Silver-Russell syndrome. J Med Genet. 2008;45:396–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18474587

    Article  CAS  PubMed  Google Scholar 

  57. Schönherr N, Meyer E, Roos A, Schmidt A, Wollmann HA, Eggermann T. The centromeric 11p15 imprinting centre is also involved in Silver-Russell syndrome. J Med Genet. 2007;44:59–63. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2597902&tool=pmcentrez&rendertype=abstract

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Eggermann T, Begemann M, Binder G, Spengler S. Silver-Russell syndrome: genetic basis and molecular genetic testing. Orphanet J Rare Dis. 2010;5:19. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2907323&tool=pmcentrez&rendertype=abstract

    Article  PubMed  PubMed Central  Google Scholar 

  59. Turner CLS, Mackay DM, Callaway JLA, Docherty LE, Poole RL, Bullman H, et al. Methylation analysis of 79 patients with growth restriction reveals novel patterns of methylation change at imprinted loci. Eur J Hum Genet. 2010;18:648–55. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2987339&tool=pmcentrez&rendertype=abstract

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Habib WA, Azzi S, Brioude F, Steunou V, Thibaud N, Das Neves C, et al. Extensive investigation of the IGF2/H19 imprinting control region reveals novel OCT4/SOX2 binding site defects associated with specific methylation patterns in Beckwith-Wiedemann syndrome. Hum Mol Genet. 2014;23:5763–73.

    Article  CAS  Google Scholar 

  61. Weksberg R, Shuman C, Beckwith JB. Beckwith-Wiedemann syndrome. Eur J Hum Genet. 2010;18:8–14.

  62. Cooper WN, Luharia A, Evans GA, Raza H, Haire AC, Grundy R, et al. Molecular subtypes and phenotypic expression of Beckwith–Wiedemann syndrome. Eur J Hum Genet. 2005;13:1025–32. Available from: http://www.nature.com/doifinder/10.1038/sj.ejhg.5201463%5Cnpapers3://publication/doi/10.1038/sj.ejhg.5201463

    Article  CAS  PubMed  Google Scholar 

  63. Lam WW, Hatada I, Ohishi S, Mukai T, Joyce JA, Cole TR, et al. Analysis of germline CDKN1C (p57KIP2) mutations in familial and sporadic Beckwith-Wiedemann syndrome (BWS) provides a novel genotype-phenotype correlation. J Med Genet. 1999;36:518–23. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1734395&tool=pmcentrez&rendertype=abstract

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Netchine I, Rossignol S, Azzi S, Brioude F, Bouc YL. Imprinted anomalies in fetal and childhood growth disorders: the model of Russell-Silver and Beckwith-Wiedemann syndromes. Dev Biol GH Secretion, Growth Treat. 2012; p. 60–70.

  65. Brioude F, Lacoste A, Netchine I, Vazquez MP, Auber F, Audry G, et al. Beckwith-Wiedemann syndrome: growth pattern and tumor risk according to molecular mechanism, and guidelines for tumor surveillance. Horm Res Paediatr. 2014;80:457–65.

    Article  CAS  Google Scholar 

  66. `Ramsden SC, Clayton-Smith J, Birch R, Buiting K. Practice guidelines for the molecular analysis of Prader-Willi and Angelman syndromes. BMC Med Genet. 2010;11:70. Available from: http://bmcmedgenet.biomedcentral.com/articles/10.1186/1471-2350-11-70

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Buiting K, Saitoh S, Gross S, Dittrich B, Schwartz S, Nicholls RD, et al. Inherited microdeletions in the Angelman and Prader-Willi syndromes define an imprinting centre on human chromosome 15. Nat Genet. 1995;9:395–400.

    Article  CAS  PubMed  Google Scholar 

  68. Sahoo T, del Gaudio D, German JR, Shinawi M, Peters SU, Person RE, et al. Prader-Willi phenotype caused by paternal deficiency for the HBII-85 C/D box small nucleolar RNA cluster. Nat Genet. 2008;40:719–21. Available from: http://dx.doi.org/10.1038/ng.158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Saitoh S, Buiting K, Rogan PK, Buxton JL, Driscoll DJ, Arnemann J, et al. Minimal definition of the imprinting center and fixation of chromosome 15q11-q13 epigenotype by imprinting mutations. Proc Natl Acad Sci U S A. 1996;93:7811–5. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=38830&tool=pmcentrez&rendertype=abstract

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. de Smith AJ, Purmann C, Walters RG, Ellis RJ, Holder SE, Van Haelst MM, et al. A deletion of the HBII-85 class of small nucleolar RNAs (snoRNAs) is associated with hyperphagia, obesity and hypogonadism. Hum Mol Genet. 2009;18:3257–65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Horsthemke B, Wagstaff J. Mechanisms of imprinting of the Prader-Willi/Angelman region. Am J Med Genet Part A. 2008; p. 2041–52.

  72. Malzac P, Webber H, Moncla A, Graham JM, Kukolich M, Williams C, et al. Mutation analysis of UBE3A in Angelman syndrome patients. Am J Hum Genet. 1998;62:1353–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Matsuura T, Sutcliffe JS, Fang P, Galjaard RJ, Jiang YH, Benton CS, et al. De novo truncating mutations in E6-AP ubiquitin-protein ligase gene (UBE3A) in Angelman syndrome. Nat Genet. 1997;15:74–7.

    Article  CAS  PubMed  Google Scholar 

  74. Kishino T, Lalande M, Wagstaff J. UBE3A/E6-AP mutations cause Angelman syndrome. Nat Genet. 1997;15:70–3.

    Article  CAS  PubMed  Google Scholar 

  75. Baple EL, Poole RL, Mansour S, Willoughby C, Temple IK, Docherty LE, et al. An atypical case of hypomethylation at multiple imprinted loci. Eur J Hum Genet. 2011;19:360–2. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3061991&tool=pmcentrez&rendertype=abstract

    Article  PubMed  PubMed Central  Google Scholar 

  76. Linglart A, Gensure RC, Olney RC, Jüppner H, Bastepe M. A novel STX16 deletion in autosomal dominant pseudohypoparathyroidism type Ib redefines the boundaries of a cis-acting imprinting control element of GNAS. Am J Hum Genet. 2005;76:804–14. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1199370&tool=pmcentrez&rendertype=abstract

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Bastepe M, Fröhlich LF, Linglart A, Abu-Zahra HS, Tojo K, Ward LM, et al. Deletion of the NESP55 differentially methylated region causes loss of maternal GNAS imprints and pseudohypoparathyroidism type Ib. Nat Genet. 2005;37:25–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15592469

    Article  CAS  PubMed  Google Scholar 

  78. Bastepe M, Lane AH, Jüppner H. Paternal uniparental isodisomy of chromosome 20q—and the resulting changes in GNAS1 methylation—as a plausible cause of pseudohypoparathyroidism. Am J Hum Genet. 2001;68:1283–9. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1226109&tool=pmcentrez&rendertype=abstract

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Linglart A, Bastepe M, Jüppner H. Similar clinical and laboratory findings in patients with symptomatic autosomal dominant and sporadic pseudohypoparathyroidism type Ib despite different epigenetic changes at the GNAS locus. Clin Endocrinol. 2007;67:822–31.

    Article  CAS  Google Scholar 

  80. Liu J, Litman D, Rosenberg MJ, Yu S, Biesecker LG, Weinstein LS. A GNAS1 imprinting defect in pseudohypoparathyroidism type IB. J Clin Invest. 2000;106:1167–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Bastepe M, Altug-Teber O, Agarwal C, Oberfield SE, Bonin M, Jüppner H. Paternal uniparental isodisomy of the entire chromosome 20 as a molecular cause of pseudohypoparathyroidism type Ib (PHP-Ib). Bone. 2011;48:659–62.

    Article  CAS  PubMed  Google Scholar 

  82. Izzi B, Van Geet C, Freson K. Recent advances in GNAS epigenetic research of pseudohypoparathyroidism. Curr Mol Med. 2012. p. 566–73. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22300135

  83. Shield JP, Gardner RJ, Wadsworth EJ, Whiteford ML, James RS, Robinson DO, et al. Aetiopathology and genetic basis of neonatal diabetes. Arch Dis Child Fetal Neonatal Ed. 1997;76:F39–42.

  84. Arthur EI, Zlotogora J, Lerer I, Dagan J, Marks K, Abeliovich D. Transient neonatal diabetes mellitus in a child with invdup(6)(q22q23) of paternal origin. Eur J Hum Genet. 1997;5:417–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9450188

    CAS  PubMed  Google Scholar 

  85. Temple IK, Shield JPH. Transient neonatal diabetes, a disorder of imprinting. J Med Genet. 2002;39:872–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Babenko AP, Polak M, Cavé H, Busiah K, Czernichow P, Scharfmann R, et al. Activating mutations in the ABCC8 gene in neonatal diabetes mellitus. N Engl J Med. 2006;355:456–66.

  87. Vaxillaire M, Dechaume A, Busiah K, Cave H, Pereira S, Scharfmann R, et al. New ABCC8 mutations in relapsing neonatal diabetes and clinical features. Diabetes. 2007;56:1737–41.

    Article  CAS  PubMed  Google Scholar 

  88. Hattersley AT, Ashcroft FM. Activating mutations in Kir6.2 and neonatal diabetes: new clinical syndromes, new scientific insights, and new therapy. Diabetes. 2005; p. 2503–13.

  89. Anik A, Çatli G, Abaci A, Yiş U, Ören H, Güleryüz H, et al. A novel activating ABCC8 mutation underlying neonatal diabetes mellitus in an infant presenting with cerebral sinovenous thrombosis. J Pediatr Endocrinol Metab. 2014;27:533–7.

    CAS  PubMed  Google Scholar 

  90. Temple IK, Gardner RJ, Robinson DO, Kibirige MS, Ferguson AW, Baum JD, et al. Further evidence for an imprinted gene for neonatal diabetes localised to chromosome 6q22-q23. Hum Mol Genet. 1996;5:1117–21.

    Article  CAS  PubMed  Google Scholar 

  91. Das S, Lese CM, Song M, Jensen JL, Wells LA, Barnoski BL, et al. Partial paternal uniparental disomy of chromosome 6 in an infant with neonatal diabetes, macroglossia, and craniofacial abnormalities. Am J Hum Genet. 2000;67:1586–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Baglivo I, Esposito S, De CL, Sparago A, Anvar Z, Riso V, et al. Genetic and epigenetic mutations affect the DNA binding capability of human ZFP57 in transient neonatal diabetes type 1. FEBS Lett. 2013;587:1474–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Temple IK, Shield JPH. 6q24 transient neonatal diabetes. Rev Endocr Metab Disord. 2010;11:199–204.

    Article  PubMed  Google Scholar 

  94. Takikawa S, Wang X, Ray C, Vakulenko M, Bell FT, Li X. Human and mouse ZFP57 proteins are functionally interchangeable in maintaining genomic imprinting at multiple imprinted regions in mouse ES cells. Epigenetics. 2013;8:1268–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ideraabdullah FY, Bartolomei MS. ZFP57: KAPturing DNA methylation at imprinted loci. Mol Cell. 2011; p. 341–2.

  96. Yada T, Sakurada M, Ishihara H, Nakata M, Shioda S, Yaekura K, et al. Pituitary adenylate cyclase-activating polypeptide (PACAP) is an islet substance serving as an intra-islet amplifier of glucose-induced insulin secretion in rats. J Physiol. 1997;505:319–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ciani E, Hoffmann A, Schmidt P, Journot L, Spengler D. Induction of the PAC1-R (PACAP-type I receptor) gene by p53 and Zac. Mol Brain Res. 1999;69:290–4.

    Article  CAS  PubMed  Google Scholar 

  98. Kamiya M, Judson H, Okazaki Y, Kusakabe M, Muramatsu M, Takada S, et al. The cell cycle control gene ZAC/PLAGL1 is imprinted—a strong candidate gene for transient neonatal diabetes. Hum Mol Genet. 2000;9:453–60. Available from: http://www.scopus.com/inward/record.url?eid=2-s2.0-0034639657&partnerID=40&md5=bc103643ac170924f2f4251bebff222f

    Article  CAS  PubMed  Google Scholar 

  99. Mackay DJG, Temple IK. Transient neonatal diabetes mellitus type 1. Am. J. Med. Genet. Part C Semin. Med. Genet. 2010. p. 335–42.

  100. Ma D, Shield JP, Dean W, Leclerc I, Knauf C, Burcelin RR, et al. Impaired glucose homeostasis in transgenic mice expressing the human transient neonatal diabetes mellitus locus, TNDM. J Clin Invest. 2004;114:339–48. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15286800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Iglesias-Platas I, Martin-Trujillo A, Petazzi P, Guillaumet-Adkins A, Esteller M, Monk D. Altered expression of the imprinted transcription factor PLAGL1 deregulates a network of genes in the human IUGR placenta. Hum Mol Genet. 2014;23:6275–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Varrault A, Gueydan C, Delalbre A, Bellmann A, Houssami S, Aknin C, et al. Zac1 regulates an imprinted gene network critically involved in the control of embryonic growth. Dev Cell. 2006;11:711–22.

    Article  CAS  PubMed  Google Scholar 

  103. Kameswaran V, Kaestner KH. The missing lnc(RNA) between the pancreatic β-cell and diabetes. Front Genet. 2014;5.

  104. Hoffmann A, Spengler D. Role of ZAC1 in transient neonatal diabetes mellitus and glucose metabolism. World J Biol Chem. 2015;6:95–109. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4549774/pdf/WJBC-6-95.pdf

    Article  PubMed  PubMed Central  Google Scholar 

  105. Valleley EM, Cordery SF, Bonthron DT. Tissue-specific imprinting of the ZAC/PLAGL1 tumour suppressor gene results from variable utilization of monoallelic and biallelic promoters. Hum Mol Genet. 2007;16:972–81.

    Article  CAS  PubMed  Google Scholar 

  106. Piras G, El Kharroubi A, Kozlov S, Escalante-Alcalde D, Hernandez L, Copeland NG, et al. Zac1 (Lot1), a potential tumor suppressor gene, and the gene for epsilon-sarcoglycan are maternally imprinted genes: identification by a subtractive screen of novel uniparental fibroblast lines. Mol Cell Biol. 2000;20:3308–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Mackay DJG, Coupe AM, Shield JPH, Storr JNP, Temple IK, Robinson DO. Relaxation of imprinted expression of ZAC and HYMAI in a patient with transient neonatal diabetes mellitus. Hum Genet. 2002;110:139–44.

    Article  CAS  PubMed  Google Scholar 

  108. Peille AL, Brouste V, Kauffmann A, Lagarde P, Le Morvan V, Coindre JM, et al. Prognostic value of PLAGL1-specific CpG site methylation in soft-tissue sarcomas. PLoS One. 2013;8.

  109. Kamikihara T, Arima T, Kato K, Matsuda T, Kato H, Douchi T, et al. Epigenetic silencing of the imprinted gene ZAC by DNA methylation is an early event in the progression of human ovarian cancer. Int J Cancer. 2005;115:690–700.

    Article  CAS  PubMed  Google Scholar 

  110. Wakeling EL. Silver Russell syndrome. Arch Dis Child. 2011;96:1156–61.

    Article  PubMed  Google Scholar 

  111. Rossignol S, Netchine I, Le Bouc Y, Gicquel C. Epigenetics in Silver-Russell syndrome. Best Pract Res Clin Endocrinol Metab. 2008; p. 403–14.

  112. Monk D, Bentley L, Hitchins M, Myler RA, Clayton-Smith J, Ismail S, et al. Chromosome 7p disruptions in Silver Russell syndrome: delineating an imprinted candidate gene region. Hum Genet. 2002;111:376–87.

    Article  CAS  PubMed  Google Scholar 

  113. Wakeling EL, Amero SA, Alders M, Bliek J, Forsythe E, Kumar S, et al. Epigenotype-phenotype correlations in Silver-Russell syndrome. J Med Genet. 2010;47:760–8. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2976034&tool=pmcentrez&rendertype=abstract

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Eggermann T. Epigenetic regulation of growth: lessons from Silver-Russell syndrome. Endocr Dev. 2009; p. 10–9.

  115. Eggermann T, Schönherr N, Meyer E, Obermann C, Mavany M, Eggermann K, et al. Epigenetic mutations in 11p15 in Silver-Russell syndrome are restricted to the telomeric imprinting domain. J Med Genet. 2006;43:615–6. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2564559&tool=pmcentrez&rendertype=abstract

    Article  CAS  PubMed  Google Scholar 

  116. Bliek J, Terhal P, van den Bogaard M-J, Maas S, Hamel B, Salieb-Beugelaar G, et al. Hypomethylation of the H19 gene causes not only Silver-Russell syndrome (SRS) but also isolated asymmetry or an SRS-like phenotype. Am J Hum Genet. 2006;78:604–14. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1424698&tool=pmcentrez&rendertype=abstract

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Pettenati MJ, Haines JL, Higgins RR, Wappner RS, Palmer CG, Weaver DD. Wiedemann-Beckwith syndrome: presentation of clinical and cytogenetic data on 22 new cases and review of the literature. Hum Genet. 1986;74:143–54.

    Article  CAS  PubMed  Google Scholar 

  118. Ward A. Beckwith-Wiedemann syndrome and Wilms’ tumour. Mol Hum Reprod. 1997;3.

  119. Weksberg R, Nishikawa J, Caluseriu O, Fei YL, Shuman C, Wei C, et al. Tumor development in the Beckwith-Wiedemann syndrome is associated with a variety of constitutional molecular 11p15 alterations including imprinting defects of KCNQ1OT1. Hum Mol Genet. 2001;10:2989–3000.

  120. Clericuzio CL, Martin RA. Diagnostic criteria and tumor screening for individuals with isolated hemihyperplasia. Genet Med. 2009;11:220–2. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3111026&tool=pmcentrez&rendertype=abstract

    Article  PubMed  PubMed Central  Google Scholar 

  121. Choufani S, Shuman C, Weksberg R. Molecular findings in Beckwith-Wiedemann syndrome. Am J Med Genet Part C Semin Med Genet. 2013;163:131–40.

    Article  CAS  Google Scholar 

  122. Kanduri C. Kcnq1ot1: a chromatin regulatory RNA. Semin. Cell Dev Biol. 2011; p. 343–50.

  123. Choufani S, Shuman C, Weksberg R. Beckwith-Wiedemann syndrome. Am J Med Genet Part C Semin Med Genet. 2010; p. 343–54.

  124. Besson A, Dowdy SF, Roberts JM. CDK inhibitors: cell cycle regulators and beyond. Dev Cell. 2008; p. 159–69.

  125. Lim S, Kaldis P. Cdks, cyclins and CKIs: roles beyond cell cycle regulation. Development [Internet]. 2013;140:3079–93. Available from: http://dev.biologists.org/content/140/15/3079.abstract

    Article  CAS  Google Scholar 

  126. Eggermann T. Silver-Russell and Beckwith-Wiedemann syndromes: opposite (epi)mutations in 11p15 result in opposite clinical pictures. Horm Res. 2009; p. 30–5.

  127. Lewis A, Green K, Dawson C, Redrup L, Huynh KD, Lee JT, et al. Epigenetic dynamics of the Kcnq1 imprinted domain in the early embryo. Development. 2006;133:4203–10.

    Article  CAS  PubMed  Google Scholar 

  128. Demars J, Shmela ME, Rossignol S, Okabe J, Netchine I, Azzi S, et al. Analysis of the IGF2/H19 imprinting control region uncovers new genetic defects, including mutations of OCT-binding sequences, in patients with 11p15 fetal growth disorders. Hum Mol Genet. 2010;19:803–14.

    Article  CAS  PubMed  Google Scholar 

  129. Azzi S, Abi Habib W, Netchine I. Beckwith-Wiedemann and Russell-Silver syndromes: from new molecular insights to the comprehension of imprinting regulation. Curr Opin Endocrinol Diabetes Obes. 2014;21:30–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24322424

    Article  CAS  PubMed  Google Scholar 

  130. Calvello M, Tabano S, Colapietro P, Maitz S, Pansa A, Augello C, et al. Quantitative DNA methylation analysis improves epigenotype-phenotype correlations in Beckwith-Wiedemann syndrome. Epigenetics. 2013;8:1053–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Paganini L, Carlessi N, Fontana L, Silipigni R, Motta S, Fiori S, et al. Beckwith-Wiedemann syndrome prenatal diagnosis by methylation analysis in chorionic villi. Epigenetics. 2015;10:643–9.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Burd L, Vesely B, Martsolf J, Kerbeshian J. Prevalence study of Prader-Willi syndrome in North Dakota. Am J Med Genet. 1990;37:97–9.

    Article  CAS  PubMed  Google Scholar 

  133. Ehara H, Ohno K, Takeshita K. Frequency of the Prader-Willi syndrome in the San-in district, Japan. Brain Dev. 1995;17:324–6.

    Article  CAS  PubMed  Google Scholar 

  134. Cassidy SB, Schwartz S, Miller JL, Driscoll DJ. Prader-Willi syndrome. Genet. Med. 2012;14:10–26. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22237428

    Article  CAS  PubMed  Google Scholar 

  135. Rodriguez-Jato S, Nicholls RD, Driscoll DJ, Yang TP. Characterization of cis- and trans-acting elements in the imprinted human SNURF-SNRPN locus. Nucleic Acids Res. 2005;33:4740–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Perk J, Makedonski K, Lande L, Cedar H, Razin A, Shemer R. The imprinting mechanism of the Prader-Willi/Angelman regional control center. EMBO J. 2002;21:5807–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Runte M, Hüttenhofer A, Groß S, Kiefmann M, Horsthemke B, Buiting K. The IC-SNURF–SNRPN transcript serves as a host for multiple small nucleolar RNA species and as an antisense RNA for UBE3A. Hum Mol Genet. 2001;10:2687–700.

  138. Will CL, Lührmann R. Spliceosome structure and function. Cold Spring Harb Perspect Biol. 2011;3:1–2.

    Article  CAS  Google Scholar 

  139. Dindot SV, Antalffy BA, Bhattacharjee MB, Beaudet AL. The Angelman syndrome ubiquitin ligase localizes to the synapse and nucleus, and maternal deficiency results in abnormal dendritic spine morphology. Hum. Mol. Genet. 2008;17:111–8.

    Article  CAS  PubMed  Google Scholar 

  140. Greer PL, Hanayama R, Bloodgood BL, Mardinly AR, Lipton DM, Flavell SW, et al. The Angelman syndrome protein Ube3A regulates synapse development by ubiquitinating arc. Cell. 2010;140:704–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Ferdousy F, Bodeen W, Summers K, Doherty O, Wright O, Elsisi N, et al. Drosophila Ube3a regulates monoamine synthesis by increasing GTP cyclohydrolase I activity via a non-ubiquitin ligase mechanism. Neurobiol Dis. 2011;41:669–77.

    Article  CAS  PubMed  Google Scholar 

  142. Buiting K. Prader-Willi syndrome and Angelman syndrome. Am J Med Genet Part C Semin Med Genet. 2010; p. 365–76.

  143. Elena G, Bruna C, Benedetta M, Stefania DC, Giuseppe C. Prader-Willi syndrome: clinical aspects. J. Obes. 2012.

  144. Butler MG. Genomic imprinting disorders in humans: a mini-review. J Assist Reprod Genet. 2009; p. 477–86.

  145. Sarkar PA, Shigli A, Patidar C. Happy Puppet syndrome. BMJ Case Rep. 2011;2011:9–11. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3207767&tool=pmcentrez&rendertype=abstract

    Google Scholar 

  146. Mertz LGB, Christensen R, Vogel I, Hertz JM, Nielsen KB, Grønskov K, et al. Angelman syndrome in Denmark. Birth incidence, genetic findings, and age at diagnosis. Am J Med Genet Part A. 2013;161:2197–203.

    Article  CAS  Google Scholar 

  147. Steffenburg S, Gillberg CL, Steffenburg U, Kyllerman M. Autism in Angelman syndrome: a population-based study. Pediatr Neurol. 1996;14:131–6.

    Article  CAS  PubMed  Google Scholar 

  148. Runte M, Kroisel PM, Gillessen-Kaesbach G, Varon R, Horn D, Cohen MY, et al. SNURF-SNRPN and UBE3A transcript levels in patients with Angelman syndrome. Hum Genet. 2004;114:553–61.

    Article  CAS  PubMed  Google Scholar 

  149. Daily J, Smith AG, Weeber EJ. Spatial and temporal silencing of the human maternal UBE3A gene. Eur J Paediatr Neurol. 2012;16:587–91.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Margolis SS, Sell GL, Zbinden MA, Bird LM. Angelman syndrome. Neurotherapeutics. 2015;12:641–50. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26040994

  151. Judson MC, Sosa-Pagan JO, Del Cid WA, Han JE, Philpot BD. Allelic specificity of Ube3a expression in the mouse brain during postnatal development. J Comp Neurol. 2014;522:1874–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. White HE, Hall VJ, Cross NCP. Methylation-sensitive high-resolution melting-curve analysis of the SNRPN gene as a diagnostic screen for Prader-Willi and Angelman syndromes. Clin Chem. 2007;53:1960–2.

    Article  CAS  PubMed  Google Scholar 

  153. Mantovani G. Clinical review: pseudohypoparathyroidism: diagnosis and treatment. J Clin Endocrinol Metab. 2011;96:3020–30. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21816789

  154. Bastepe M. The GNAS locus: quintessential complex gene encoding Gsalpha, XLalphas, and other imprinted transcripts. Curr Genomics. 2007;8:398–414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Hayward BE, Bonthron DT. An imprinted antisense transcript at the human GNAS1 locus. Hum Mol Genet. 2000;9:835–41. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10749992

    Article  CAS  PubMed  Google Scholar 

  156. Turan S, Bastepe M. The GNAS complex locus and human diseases associated with loss-of-function mutations or epimutations within this imprinted gene. Horm Res Paediatr. 2013; p. 229–41.

  157. Liu J, Erlichman B, Weinstein LS. The stimulatory G protein alpha-subunit Gs alpha is imprinted in human thyroid glands: implications for thyroid function in pseudohypoparathyroidism types 1A and 1B. J Clin Endocrinol Metab. 2003;88:4336–41. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12970307

    Article  CAS  PubMed  Google Scholar 

  158. Vilardaga JP, Romero G, Friedman PA, Gardella TJ. Molecular basis of parathyroid hormone receptor signaling and trafficking: a family B GPCR paradigm. Cell Mol Life Sci. 2011; p. 1–13.

  159. Li T, Vu TH, Zeng ZL, Nguyen BT, Hayward BE, Bonthron DT, et al. Tissue-specific expression of antisense and sense transcripts at the imprinted Gnas locus. Genomics. 2000;69:295–304. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11056047

    Article  CAS  PubMed  Google Scholar 

  160. Plagge A, Kelsey G. Imprinting the Gnas locus. Cytogenet Genome Res. 2006; p. 178–87.

  161. Turan S, Ignatius J, Moilanen JS, Kuismin O, Stewart H, Mann NP, et al. De novo STX16 deletions: an infrequent cause of pseudohypoparathyroidism type Ib that should be excluded in sporadic cases. J Clin Endocrinol Metab. 2012;97.

  162. Elli FM, De Sanctis L, Peverelli E, Bordogna P, Pivetta B, Miolo G, et al. Autosomal dominant pseudohypoparathyroidism type Ib: a novel inherited deletion ablating STX16 causes loss of imprinting at the A/B DMR. J Clin Endocrinol Metab. 2014;99.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amr Rafat Elhamamsy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elhamamsy, A.R. Role of DNA methylation in imprinting disorders: an updated review. J Assist Reprod Genet 34, 549–562 (2017). https://doi.org/10.1007/s10815-017-0895-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-017-0895-5

Keywords

Navigation