Skip to main content

Advertisement

Log in

Learning Science Through Enacted Astronomy

  • Published:
International Journal of Science and Mathematics Education Aims and scope Submit manuscript

Abstract

The Human Orrery is a representation of the Solar System at a human scale, on which positions of planets over time are symbolized by different discs. Learners can then walk along the orbits of the planets with the right pace. This pedagogical tool uses the principles of enacted cognition to promote a better understanding of the scientific laws of dynamics. Enaction assumes that cognition is based on action. Applied to pedagogy, it implies that learning of concepts must be based on gestures and perceptions first. I applied during 2 years an enacted pedagogical sequence using our Human Orrery to different populations of learners. The main purpose was the understanding of velocity and inertia by KS4 classes (14–16 years old). Interviews and closed questions reveal a qualitative enhancement of the motivation and well-being of the learners during the enacted sequence. To evaluate further the impact of the enacted sequence, I formulated 2 open questions. The first one concerns the relation between distance, duration, and velocity through the period of planets. The second one focuses on inertia and gravity through the comparison of the free fall of an apple on Earth and the orbit of the Moon around Earth. The questions were asked to KS4 pupils after the enacted sequence (experimental classes) and to KS4, undergraduate and pre-teachers after a classical lecture on dynamics (demonstration classes). Quantitative analysis of the answers reveals specific cognitive insight, especially for students reasoning about velocity and trajectories. The general purpose of this paper is thus to illustrate the use of the Human Orrery in the context of science education in the classroom and to make a first, preliminary demonstration of its efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. NASA web site: https://kepler.nasa.gov/multimedia/animations/orrery3/, or the Astronomical Society of the Pacific, http://www.astrosociety.org/wp-content/uploads/2013/02/uitc82.pdf

    Web site of the project : http://www.planetaire.overblog.com

  2. The Fisher’s exact test were computed with the software R, using the p value returned by the routine “Fisher.test”

References

  • Abrahamson, D., Shayan, S., Bakker, A., & van der Schaaf, M. F. (2016). Eye-tracking Piaget, capturing the emergence of attentional anchors in the coordination of proportional motor action. Human Development, 58(4–5), 218–244.

    Google Scholar 

  • Albert, D., Kirchmeier-Rust, M., & Matsuda, F. (2008). A formal framework for modeling the development course of competence and performance in the distance, speed and time domain. Development Review, 28, 401–420.

    Article  Google Scholar 

  • Asher, D. J., Bailey, M. E., Christou, A. A., & Popescu, M. D. (2007). The human Orrery: A new educational tool for astronomy. The Astronomy Education Review, 5(2), 159–176.

    Article  Google Scholar 

  • Bailey, M. E. (2006). The Armagh Observatory Human Orrery. The Observatory, 126, 236–241.

    Google Scholar 

  • Bailey, J. M., & Slater, T. F. (2005). Resource letter AER-1: Astronomy education research. American Journal of Physics, 73(8), 677–683.

    Article  Google Scholar 

  • Balta, N., & Eryýlmaz, A. (2017). Counterintuitive dynamics test. International Journal of Science and Mathematics Education, 15(3), 411-431. https://doi.org/10.1007/s10763-015-9694-6.

  • Beare, R. (2007). Investigation into the potential of investigative projects involving powerful robotic telescopes to inspire interest in science. International Journal of Science Education, 29(3), 279–306.

    Article  Google Scholar 

  • Besançon, M., Fenouillet, F., & Shankland, R. (2015). Influence of school environment on adolescents’ creative potential, motivation and well-being. Learning and Individual Differences, 43, 178–184.

    Article  Google Scholar 

  • Boër, M., Thiébaut, C., Pack, H., Pennypaker, C., Isaac, M., Melchior, A.L., … Ebisuzaki, T. (2001). Hands-On universe: A global program for education and public outreach in astronomy. In ASP Conf. (Ed.), Proceedings of ADASS X conference (pp. 1-4). Boston, MA. Retrieved from https://arxiv.org/pdf/astro-ph/0109372.

  • Closset, J.L. (1983). Le raisonnement linéaire en électrocinétique [Linear reasoning in electrocinetics] (Doctoral dissertation). Retrieved from Thèse en Ligne. Université Denis Diderot Paris VII, Paris, France.

  • Coomans, M. K. D. & Timmermans, H. J. P. (1997). Towards a taxonomy of virtual reality user interfaces. In Information Vizualization IEEE (Ed.), Proceedings of 1997 I.E. Conference (pp. 279–284). Washington, DC: IEEE. Retrieved from http://alexandria.tue.nl/openaccess/Metis209435.pdf.

  • Coquidé, M., & Morge, L. (2011). Espace et temps dans l'enseignement des sciences et des technologies [Space and time in science and technology teaching]. Recherches en didactique des sciences et des technologies, 4, 9–26.

    Google Scholar 

  • Crépault, J. (1989). Temps et raisonnement : Développement cognitif de l'enfant à l'adulte [Time and reasoning: Cognitive development from child to adult]. Lille, France: Presses universitaires de Lille.

  • Doran, R., Melchior, A.L., Boudier, T., Delva, P., Ferlet, R., de Almeida, M.L.T., … Roberts, S. (2012). Astrophysics datamining in the classroom: Exploring real data with new software tools and robotic telescopes. Retrieved from: http://arxiv.org/pdf/1202.2764v1.pdf

  • Ebersbach, M., Van Dooren, W., & Verschaffel, L. (2011). Investigating children’s and adolescents’ understanding of constant and accelerated notions. International Journal of Science and Mathematics Education, 9(1), 25-46. https://doi.org/10.1007/s10763-010-9208-5.

  • Fenouillet, F., Heutte, H., Martin-Krumm, C., & Boniwell, I. (2015). Validation française de l’échelle multidimensionnelle de satisfaction de vie chez l'élève [Validation of the Multidimensional Students’ Life Satisfaction Scale—MSLSS, in France]. Canadian Journal of Behavioural Science / Revue canadienne des sciences du comportement, 47(1), 83–90.

    Article  Google Scholar 

  • Francis, P. (2005). Using role-playing games to teach astronomy: An evaluation. Astronomy Education Review, 4(2), 1–9.

    Article  Google Scholar 

  • Frappart, S., Raijmakers, M., & Frède, V. (2014). What do children know and understand about universal gravitation? Structural and developmental aspects. Journal of Experimental Child Psychology, 120, 17–38.

    Article  Google Scholar 

  • Glenberg, A. M. (2015). Few believe the world is flat: How embodiment is changing the scientific understanding of cognition. Canadian Journal of Experimental Psychology, 69(2), 165–171.

    Article  Google Scholar 

  • Glenberg, A. M., Witt, J. K., & Metcalfe, J. (2013). From the revolution to embodiment: 25 years of cognitive psychology. Perspective on Psychological Science, 8, 573–585.

    Article  Google Scholar 

  • Goldin-Meadow, S., Nusbaum, H., Kelly, S. D., & Wagner, S. (2001). Explaining math: Gesturing lightens the load. Psychological Science, 12, 516–522.

    Article  Google Scholar 

  • Halloun, I. A., & Hestenes, D. (1985). The initial knowledge state of college physics students. American Journal of Physics, 53(11), 1043–1055.

    Article  Google Scholar 

  • Hestenes, D., Wells, M., & Swackhamer, G. (1992). Force concept inventory. Physics Teacher, 30, 141–158.

    Article  Google Scholar 

  • Johnson-Glenberg, M. C., Megowan-Romanowicz, C., Birchfield, D. A., & Savio-Ramos, C. (2016). Effects of embodied learning and digital platform on the retention of physics content: Centripetal force. Frontiers in Psychology, 7, 1819.

    Article  Google Scholar 

  • Kim, M., Roth, W. M., & Thom, J. (2011). Children’s gestures and the embodied knowledge of geometry. International Journal of Science and Mathematics Education, 9(1), 207-238.

  • Lakoff, G., & Johnson, M. (1999). Philosophy in the flesh: The embodied mind and its challenge to western thought. New York, NY: Basic Books.

  • Lee, H. S., & Park, J. (2013). Deductive reasoning to teach Newton’s law of motion. International Journal of Science and Mathematics Education, 11(6), 1391-1414.

  • Lee, G., & Yi, J. (2013). Where cognitive conflict arises from?: The structure of creating cognitive conflict. International Journal of Science and Mathematics Education, 11(3), 601-623.

  • Planinic, M., Milin-Sipus, Z., Katic, H., Susac, A., & Ivanjek, L. (2012). Comparison of student understanding of line graph slope in physics and mathematics. International Journal of Science and Mathematics Education, 10(6), 1393-1414.

  • Plummer, J. D., Wasko, K., & Slagle, C. (2011). Children learning to explain daily celestian motions: Understanding astronomy across moving frames of reference: Exploring the role of classroom and planetarium-based instructional contexts. International Journal of Science Education, 33(14), 1963–1992.

    Article  Google Scholar 

  • Plummer, J. D., Kocareli, A., & Slagle, C. (2014). Learning to explain astronomy across moving frames of reference: Exploring the role of classroom and planetarium-based instructional contexts. International Journal of Science Education, 36(7), 1083–1106.

    Article  Google Scholar 

  • Rollinde, E., Montersino, I., Brunet, P., Kamech, N., Loakes-Gouju, F., Cossara, S., & Le Lan, B. (2015). Un apprentissage en mouvement [Learning by moving]. In Proceedings of 2015 QPES Conference (pp. 730–746). Brest, France: QPES. Retrieved from http://www.colloque-pedagogie.org/?q=node/751.

  • Rollinde, E., Chagnon, G., Delva, P., Ferlet, R., Melchior, A.-L., Rambaux, N., & Salomé, P. (2016). Enseigner la physique et les mathématiques autrement [Teaching physics and mathematics in another way]. Bulletin de l’Union de Physiciens, 110, 469–496.

  • Roorda, G., Vos, P., & Goedhart, M. J. (2015). An actor-oriented transfer perspective on high school students’ development of the use of procedures to solve problems on rate of change. International Journal of Science and Mathematics Education, 13(4), 863-889.

  • Rozier, S. (1988). Le raisonnement linéaire causal en thermodynamique classique élémentaire [Linear causal reasoning in classical thermodynamics] (Doctoral dissertation). Retrieved from Université Denis Diderot Paris VII, Paris, France. (Accession No.: tel-01275811, version 1). https://tel.archives-ouvertes.fr/tel-01275811.

  • Segal, M. (2011). Do Gestural Interfaces Promote Thinking? Embodied Interaction: Congruent Gestures and Direct-Touch Promote Performance in Math (Doctoral dissertation). Retrieved from Graduate School of Arts and Sciences, Columbia University. https://academiccommons.columbia.edu/item/ac:132260.

  • Siegler, R. (2006). Microgenetic analyses of learning. In D. Khun & R. Siegler (Eds.), Handbook of child psychology: Vol. 2: Cognition, perception and language (6th ed., pp. 464–510). Hoboken, NJ: Wiley.

  • Slater, S. J., Morrow, C. A. & Slater, T. F. (2008). The impact of a kinesthetic astronomy curriculum on the content knowledge of at-risk students. Paper presented at the meeting of the National Association for Research in Science Teaching, Baltimore.

  • Sutopo, & Waldrip, B. (2014). Impact of a representational approach on students’ reasoning and conceptual understanding in learning mechanics. International Journal of Science and Mathematics Education, 12(4), 741-765. https://doi.org/10.1007/s10763-013-9431-y.

  • Thompson, P. (1994). The development of the concept of speed and its relationship to concepts of rate. In G. Harel & J. Confrey (Eds.), The development of multiplicative reasoning in the learning of mathematics (pp. 181–234). Albany, NY: State University of New York Press.

  • Treagust, D. F., & Duit, R. (2008). Conceptual change: A discussion of theoretical, methodological and practical challenges of science education. Cultural Studies of Science Education, 3(2), 297–328.

    Article  Google Scholar 

  • Trudel, L., & Métioui, A. (2011). Favoriser la compréhension des concepts du mouvement rectiligne à vitesse constante à l'aide d'une investigation scientifique assistée par ordinateur [To favor the understanding of rectilinear motion with a computer assisted science investigation]. Recherches en didactique des sciences et des technologies, 4, 83–108.

    Google Scholar 

  • Varela, F., Thompson, E. & Rosch, E. (1991). The embodied mind: Cognitive science and human experience. Cambridge, MA: MIT Press.

  • Wilson, M. (2002). Six views of embodied cognition. Psychonomic Bulletin & Review, 9(4), 625–636.

    Article  Google Scholar 

Download references

Acknowledgements

Part of this project was supported through the IDEX “Apprentissage en mouvement” of the ComUE Sorbonne Universités, in particular the funding of the Human Orrery. Emmanuel Rollinde is a member of the French project F-HOU, within the European network EU-HOU (http://www.eu-hou.net). I thank particularly Mme Richard (Lycée Condorcet, Paris) who has given me the opportunity to organize sequences with her students regularly. I thank her students, and all teachers and students who have worked with me on the Human Orrery or answered the questionnaire as “demonstration class”. I thank deeply Pr Glenberg and Johnson-Glenberg for fruitful discussions and their contribution to my understanding of enaction, through discussion and reading of their papers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Rollinde.

Electronic supplementary material

ESM 1

(DOCX 500 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rollinde, E. Learning Science Through Enacted Astronomy. Int J of Sci and Math Educ 17, 237–252 (2019). https://doi.org/10.1007/s10763-017-9865-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10763-017-9865-8

Keywords

Navigation