Skip to main content
Log in

The ink sac clouds octopod evolutionary history

  • CEPHALOPOD BIOLOGY AND EVOLUTION
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Difficulties in elucidating the evolutionary history of the octopods have arisen from problems in identifying informative morphological characters. Recent classifications have divided the largest group, the incirrate octopods, into five groups. These include the pelagic superfamily Argonautoidea and three gelatinous pelagic families (Vitreledonellidae, Bolitaenidae, Amphitretidae). All benthic incirrate octopods have been accommodated in the family Octopodidae, itself divided into four subfamilies, Octopodinae, Eledoninae, Bathypolypodinae and Graneledoninae, which are defined by the presence or absence of an ink sac, and uniserial or biserial sucker arrangements on the arms. We used relaxed clock models in a Bayesian framework and maximum likelihood methods to analyse three nuclear and four mitochondrial genes of representatives from each of the previous subfamilies. Strong evidence indicates that the family Octopodidae is paraphyletic and contains the gelatinous pelagic families. The subfamilies of Octopodidae recognised in earlier works do not reflect evolutionary history. The following clades were supported in all analyses: (1) Eledone/Aphrodoctopus, (2) Callistoctopus/Grimpella/Macroctopus/Scaeurgus, (3) Abdopus/Ameloctopus/Amphioctopus/Cistopus/Hapalochlaena/Octopus, (4) Enteroctopus/Muusoctopus/Vulcanoctopus, (5) Vitreledonella/Japetella, (6) Southern Ocean endemic and deep-sea taxa with uniserial suckers. These clades form the basis for a suite of taxa assigned family taxonomic rank: Amphitretidae, Bathypolypodidae, Eledonidae, Enteroctopodidae, Megaleledonidae and Octopodidae sensu nov. They are placed within the superfamily Octopodoidea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abascal, F., R. Zardoya & D. Posada, 2005. ProtTest: selection of best-fit models of protein evolution. Bioinformatics 21: 2104–2105.

    Article  CAS  PubMed  Google Scholar 

  • Adam, W. 1954. Cephalopoda. Part 3. IV—Cephalopodes l’Exclusion des genres Sepia, Sepiella et Sepioteuthis. Siboga-Expeditie LVc: 123–193.

  • Akaike, H., 1974. A new look at the statistical model identification. IEEE Transactions on Automatic Control 19: 716–723.

    Article  Google Scholar 

  • Allcock, A. L. & S. B. Piertney, 2002. Evolutionary relationships of Southern Ocean Octopodidae (Cephalopoda: Octopoda) and a new diagnosis of Pareledone. Marine Biology 140: 129–135.

    Article  Google Scholar 

  • Allcock, A. L., F. G. Hochberg & T. N. Stranks, 2003. Re-evaluation of Graneledone setebos (Cephalopoda: octopodidae) and placement in the genus Megaleledone. The Journal of the Marine Biological Association of the United Kingdom 83: 319–328.

    Google Scholar 

  • Allcock, A. L., J. M. Strugnell, H. Ruggiero & M. A. Collins, 2006. Redescription of the deep-sea octopod Benthoctopus normani (Massy 1907) and a description of a new species from the Northeast Atlantic. Marine Biology Research 2: 372–387.

    Article  Google Scholar 

  • Allcock, A. L., J. M. Strugnell, P. Prodöhl, U. Piatkowski & M. Vecchione, 2007. A new species of Pareledone (Cephalopoda: Octopodidae) from Antarctic Peninsula Waters. Polar Biology 30: 883–893.

    Article  Google Scholar 

  • Allcock, A. L., J. M. Strugnell & M. P. Johnson, 2008. How useful are the recommended counts and indices in the systematics of the Octopodidae (Mollusca: Cephalopoda). Biological Journal of the Linnean Society 95: 205–218.

    Article  Google Scholar 

  • Barker, F. K. & F. M. Lutzoni, 2002. The utility of the incongruence length difference test. Systematic Biology 51: 625–637.

    Article  PubMed  Google Scholar 

  • Berthold, T. & T. Engeser, 1987. Phylogenetic analysis and systematization of the Cephalopoda (Mollusca). Verhandlungen des Naturwissenschaftlichen Vereins inHamburg 29: 187–220.

    Google Scholar 

  • Bizikov, V. A., 2004. The shell in Vampyropoda (Cephalopoda): morphology, functional role and evolution. Ruthenica 3: 1–88.

    Google Scholar 

  • Bleidorn, C., 2007. The role of character loss in phylogenetic reconstruction as exemplified for the Annelida. Journal of Zoological Systematics and Evolutionary Research 45: 299–307.

    Article  Google Scholar 

  • Boletzky, S. V., 1992. Evolutionary aspects of development, life style, and reproductive mode in incirrate octopods (Mollusca, Cephalopoda). Revue suisse de Zoologie 99: 755–770.

    Google Scholar 

  • Buckley, T. R., P. Arensburger, C. Simon & G. K. Chambers, 2002. Combined data, Bayesian phylogenetics, and the origin of the New Zealand cicada genera. Systematic Biology 51: 4–18.

    Article  PubMed  Google Scholar 

  • Carlini, D. B., K. S. Reece & J. E. Graves, 2000. Actin gene family evolution and the phylogeny of coleoid cephalopods (Mollusca: Cephalopoda). Molecular Biology and Evolution 17: 1353–1370.

    Article  CAS  PubMed  Google Scholar 

  • Carlini, D. B., R. E. Young & M. Vecchione, 2001. A molecular phylogeny of the Octopoda (Mollusca: Cephalopoda) evaluated in light of morphological evidence. Molecular Phylogenetics and Evolution 21: 388–397.

    Article  CAS  PubMed  Google Scholar 

  • Cunningham, C. W., 1997. Can three incongruence tests predict when data should be combined? Molecular Biology and Evolution 14: 733–740.

    Article  CAS  PubMed  Google Scholar 

  • d’Acoz, C. D. & W. Vader, 2009. On Liljeborgia fissicornis (M. Sars, 1858) and three related new species from Scandinavia, with a hypothesis on the origin of the group fissicornis. Journal of Natural History 43: 2087–2139.

    Article  Google Scholar 

  • Dolphin, K., R. Belshaw, C. D. L. Orme & D. L. J. Quicke, 2000. Noise and incongruence: Interpreting results of the incongruence length difference test. Molecular Phylogenetics and Evolution 17: 401–406.

    Article  CAS  PubMed  Google Scholar 

  • d’Orbigny, A., 1835–1843. Voyage dans l’Amérique méridionale execute pendant les années 1832–33; Vol. 5. Paris et Strasbourg.

  • Drummond, A. J. & A. Rambaut, 2007. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 7: 214.

    Article  PubMed Central  PubMed  Google Scholar 

  • Drummond, A. J., S. Y. W. Ho, M. J. Phillips & A. Rambaut, 2006. Relaxed phylogenetics and dating with confidence. PLoS Biology 4: e88.

    Article  PubMed Central  PubMed  Google Scholar 

  • Engeser, T., 1988. Fossil ‘octopods’—a critical review. In Clarke, M. R. & E. R. Trueman (eds), The Mollusca. Volume 12. Paleontology and Neontology of cephalopods. Academic Press, London: 81–87.

    Chapter  Google Scholar 

  • Engeser, T. & K. Bandel, 1988. Phylogenetic classification of coleoid cephalopods. In Wiedman, J. & J. Kullmann (eds), Cephalopods—Present and Past. SchweizerbartÕsche-Verlagsbuchhandlung, Stuttgart: 105–116.

    Google Scholar 

  • Farris, J. D., M. Källersjö, A. G. Kluge & C. Bult, 1994. Testing significance of incongruence. Cladistics 10: 315–319.

    Article  Google Scholar 

  • Farris, J. D., M. Källersjö, A. G. Kluge & C. Bult, 1995. Constructing a significance test for incongruence. Systematic Biology 44: 570–572.

    Google Scholar 

  • Fuchs, D., G. Bracchi & R. Weis, 2009. New octopods (Cephalopoda: Coleoidea) from the Late Cretaceous (Upper Cenomanian) of Hâkel and Hâdjoula, Lebanon. Palaeontology 52: 65–81.

    Article  Google Scholar 

  • Gilly, W. M. F. & M. T. Lucero, 1992. Behavioural responses to chemical stimulation of the olfactory organ in the squid Loligo opalescens. The Journal of Experimental Biology 162: 209–229.

    CAS  Google Scholar 

  • González, A. F., A. Guerra, S. Pascual & P. Briand, 1998. Vulcanoctopus hydrothermalis gen. et sp. nov. (Mollusca, Cephalopoda): an octopod from a deep-sea hydrothermal vent site. Cahiers de Biologie Marine 39: 169–184.

    Google Scholar 

  • González, A. F., A. Guerra, S. Pascual & M. Segonzac, 2008. Female description of the hydrothermal vent cephalopod Vulcanoctopus hydrothermalis. Journal of the Marine Biological Association of the UK 88: 375–379.

    Google Scholar 

  • Gray, J. E., 1849. Catalogue of the Mollusca. Part I. British Museum, London.

    Google Scholar 

  • Grimpe, G., 1921. Teuthologische Mitteilungen. VII: systematiche Ubersicht der Nordsee-cephalopoden. Zoologischer Anzeiger 52: 297–305.

    Google Scholar 

  • Guzik, M. T., M. D. Norman & R. H. Crozier, 2005. Molecular phylogeny of the benthic shallow-water octopuses (Cephalopoda: Octopodinae). Molecular Phylogenetics and Evolution 37: 235–248.

    Article  CAS  PubMed  Google Scholar 

  • Hanlon, R. T. & J. B. Messenger, 1996. Cephalopod Behaviour. Cambridge University Press, Cambridge.

    Google Scholar 

  • Hipp, A. L., J. C. Hall & K. J. Sytsma, 2004. Congruence versus phylogenetic accuracy: revisiting the incongruence length difference test. Systematic Biology 53: 81–89.

    Article  PubMed  Google Scholar 

  • Hochberg, F. G., M. Nixon & R. B. Toll, 1992. Octopoda. In Sweeney, M. J., C. F. E. Roper, K. M. Mangold, M. R. Clarke & S. V. Boletzky (eds), “Larval” and juvenile cephalopods: a manual for their identification. Smithsonian Contributions to Zoology 513: 213–280.

  • Huffard, C. L. & R. L. Caldwell, 2002. Inking in a blue-ringed octopus, Hapalochlaena lunulata, with a vestigal ink sac. Pacific Science 56: 255–257.

    Article  Google Scholar 

  • Huffard, C. L. & F. G. Hochberg, 2005. Description of a new species of the genus Amphioctopus (Mollusca: Octopodidae) from the Hawai’ian Islands. Molluscan Research 25: 113–128.

    Google Scholar 

  • Johnson, K. P., R. H. Cruickshank, R. J. Adams, V. S. Smith, R. D. M. Page & D. H. Clayton, 2003. Dramatically elevated rate of mitochondrial substitution in lice (Insecta: Phthiraptera). Molecular Phylogenetics and Evolution 26: 231–242.

    Article  CAS  PubMed  Google Scholar 

  • Jones, D. T., W. R. Taylor & J. M. Thornton, 1992. The rapid generation of mutation data matrices from protein sequences. Computer Applications in the Biosciences 8: 275–282.

    CAS  PubMed  Google Scholar 

  • Lindgren, A. R., G. Giribet & M. K. Nishiguchi, 2004. A combined approach to the phylogeny of Cephalopoda (Mollusca). Cladistics 20: 454–486.

    Article  Google Scholar 

  • Lindgren, A. R., M. S. Pankey, F. G. Hochberg & T. H. Oakley, 2012. A multi-gene phylogeny of Cephalopoda supports convergent morphological evolution in association with multiple habitat shifts in the marine environment. BMC Evolutionary Biology 12: 129.

    Article  PubMed Central  PubMed  Google Scholar 

  • Lockhart, P. J., M. A. Steel, M. D. Hendy & D. Penny, 1994. Recovering evolutionary trees under a more realistic model of sequence evolution. Molecular Biology and Evolution 11: 605–612.

    CAS  PubMed  Google Scholar 

  • Maddison, W. P. & D. R. Maddison, 2009. Mesquite: a modular system for evolutionary analysis. Version 2.6. [computer program]. http://mesquiteproject.org.

  • Naef, A., 1921/1923. Cephalopoda. Fauna e flora del Golfo di Napoli, Monograph (translated from German by the Israel program for Scientific translations, 1972), Jerusalem.

  • Norman, M. D., 1992. Ameloctopus litoralis gen. & sp. nov. (Cephalopoda: Octopodidae), a new shallow-water octopus from tropical Australian waters. Invertebrate Taxonomy 6: 567–582.

    Article  Google Scholar 

  • Norman, M. D. & F. G. Hochberg, 2005. The current state of octopus taxonomy. Phuket Marine Biological Center Research Bulletin 66: 127–154.

    Google Scholar 

  • Norman, M. D., F. G. Hochberg, C. Huffard & K. M. Mangold, 2009. Octopodidae Orbigny, 1839. Octopods, octopuses, devilfishes. Version 29 December 2009 (under construction). http://tolweb.org/Octopodidae/20194/2009.12.29. In the Tree of Life Web Project, http://tolweb.org/.

  • O’Shea, S., 1999. The marine fauna of New Zealand: Octopoda (Mollusca: Cephalopoda). NIWA Biodiversity Memoir 112: 280 pp.

    Google Scholar 

  • O’Shea, S., 2004. The giant octopus Haliphron atlanticus (Mollusca: Octopoda) in New Zealand waters. New Zealand Journal of Zoology 31: 7–13.

    Article  Google Scholar 

  • Posada, D. & K. A. Crandall, 1998. Modeltest: testing the model of DNA substitution. Bioinformatics 14: 817–818.

    Article  CAS  PubMed  Google Scholar 

  • Pfenninger, M., M. Hrabakova, D. Steinke & A. Depraz, 2005. Why do snails have hairs? A Bayesian inference of character evolution. BMC Evolutionary Biology 5: 59.

    Article  PubMed Central  PubMed  Google Scholar 

  • Phillips, M. J. & D. Penny, 2003. The root of the mammalian tree inferred from whole mitochondrial genomes. Molecular Phylogenetics and Evolution 28: 171–185.

    Article  CAS  PubMed  Google Scholar 

  • Rambaut, A. R., 1996–2002. Se-Al. Sequence alignment editor v2.0a11. [computer program]. http://tree.bio.ed.ac.uk/software/seal/.

  • Rambaut, A. & A. J. Drummond, 2002–2008a. LogCombiner v1.4.8 [computer program]. http://beast.bio.ed.ac.uk/LogCombiner/.

  • Rambaut, A. & A. J. Drummond, 2002–2008b. TreeAnnotator v1.4.8 [computer program]. http://beast.bio.ed.ac.uk/TreeAnnotator/.

  • Rambaut, A. & A. J. Drummond, 2003–2008. Tracer version 1.4.1 [computer program]. http://tree.bio.ed.ac.uk/software/tracer/.

  • Robson, G. C., 1929. A Monograph of the Recent Cephalopoda (Part 1, Octopodinae). British Museum (Natural History), London.

    Google Scholar 

  • Robson, G. C., 1932. A Monograph of the Recent Cephalopoda Based on the Collections in the British Museum (Natural History), Part II, The Octopoda (Excluding the Octopodinae). British Museum (Natural History), London.

    Google Scholar 

  • Sasaki, M., 1929. A monograph of the dibranchiate cephalopods of the Japanese and adjacent waters. Journal of the College of Agriculture Hokkaido Imperial University 20(Suppl): 1–357.

    Google Scholar 

  • Schmidt, H. A., K. Strimmer, M. Vingron & A. von Haeseler, 2002. TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18: 502–504.

    Article  CAS  PubMed  Google Scholar 

  • Skinner, A., M. S. Y. Lee & M. N. Hutchinson, 2008. Rapid and repeated limb loss in a clade of scincid lizards. BMC Evolutionary Biology 8: 310.

    Article  PubMed Central  PubMed  Google Scholar 

  • Söller, R., K. Warnke, U. Saint-Paul & D. Blohm, 2000. Sequence divergence of mitochondrial DNA indicates cryptic biodiversity in Octopus vulgaris and supports the taxonomic distinctiveness of Octopus mimus (Cephalopoda: Octopodidae). Marine Biology 136: 29–35.

    Article  Google Scholar 

  • Sosa, I. D. B., K. Beckenbach, B. Hartwick & M. J. Smith, 1995. The molecular phylogeny of five Eastern North Pacific Octopus species. Molecular Phylogenetics & Evolution 4: 163–174.

    Article  Google Scholar 

  • Stamatakis, A., P. Hoover & J. Rougemont, 2008. A Rapid Bootstrap Algorithm for the RAxML Web-Servers. Systematic Biology 75: 758–771.

    Article  Google Scholar 

  • Stranks, T. N. & C. C. Lu, 1991. Post-embryonic development of the blue-ringed octopus Hapalochlaena maculosa. In Wells, F. E., D. I. Walker, H. Kirkman & R. Lethbridge (eds), Proceedings of the Third International Marine Biological Workshop: The Marine Flora and Fauna of Albany, Western Australia, 2 volumes: 713–722.

  • Strugnell, J. & A. L. Allcock, 2010. Co-estimation of phylogeny and divergence times of the Argonautoidea using relaxed phylogenetics. Molecular Phylogenetics and Evolution 54: 701–708.

    Article  PubMed  Google Scholar 

  • Strugnell, J. M., M. D. Norman, A. J. Drummond & A. Cooper, 2004. The octopuses that never came back to earth: neotenous origins for pelagic octopuses. Current Biology 18: R300–R301.

    Article  Google Scholar 

  • Strugnell, J., M. Norman, A. J. Drummond, J. Jackson & A. Cooper, 2005. Molecular phylogeny of coleoid cephalopods (Mollusca: Cephalopoda) using a multigene approach; the effect of data partitioning on resolving phylogenies in a Bayesian framework. Molecular Phylogenetics and Evolution 37: 426–441.

    Article  CAS  PubMed  Google Scholar 

  • Strugnell, J., J. Jackson, A. J. Drummond & A. Cooper, 2006. Divergence time estimates for major cephalopod groups: evidence from multiple genes. Cladistics 22: 89–96.

    Article  Google Scholar 

  • Strugnell, J. M., M. A. Collins & A. L. Allcock, 2008a. Molecular evolutionary relationships of the octopodid genus Thaumeledone (Cephalopoda: Octopodidae) from the Southern Ocean. Antarctic Science 20: 245–251.

    Article  Google Scholar 

  • Strugnell, J. M., A. D. Rogers, P. A. Prodöhl, M. A. Collins & A. L. Allcock, 2008b. The thermohaline expressway: the Southern Ocean as a centre of origin for deep-sea octopuses. Cladistics 24: 853–860.

    Article  Google Scholar 

  • Strugnell, J., J. R. Voight, P. C. Collins & A. L. Allcock, 2009. Molecular phylogenetic analysis of a known and a new hydrothermal vent octopod: their relationships with the genus Benthoctopus (Cephalopoda: Octopodidae). Zootaxa 2096: 442–459.

    Google Scholar 

  • Sweeney, M. J. & C. F. E. Roper, 1998. Classification, type localities, and type repositories of recent cephalopoda. Smithsonian Contributions to Zoology 586: 561–599.

    Google Scholar 

  • Swofford, D. L. 1998. PAUP*4.0—Phylogenetic Analysis Using Parsimony (*and Other Methods). Sinauer, Sunderland, MA.

  • Taki, I., 1961. On two new eledonid octopods from the Antarctic Sea. Journal of the Faculty of Fisheries and Animal Husbandry, Hiroshima University 3: 297–316.

    Google Scholar 

  • Taki, I., 1964. On eleven new species of the Cephalopoda from Japan, including two new genera of Octopodinae. Journal of the Faculty of Fisheries and Animal Husbandry, Hiroshima University 5: 277–343.

    Google Scholar 

  • Tryon, G. W., 1879. A Manual of Conchology, Structural and Systematic, with Illustrations of the Species, Vol. 1. Academy of Natural Science, Conchology Section, Philadelphia.

    Book  Google Scholar 

  • Voight, J. R., 1993a. A cladistic reassessment of Octopodid classification. Malacologia 35: 343–349.

    Google Scholar 

  • Voight, J. R., 1993b. The arrangement of suckers on octopodid arms as a continuous character. Malacologia 35: 351–359.

    Google Scholar 

  • Voight, J. R., 1997. Cladistic analysis of the Octopods based on anatomical characters. Journal of Mollusan Studies 63: 311–325.

    Article  Google Scholar 

  • Voight, J. R., 2001. Morphological deformation in preserved specimens of the deep-sea octopus Graneledone. Journal of Molluscan Studies 67: 95–102.

    Article  Google Scholar 

  • Voss, G. L., 1988. Evolution and phylogenetic relationships of deep-sea octopods (Cirrata and Incirrata). In Clarke, M. R. & E. R. Trueman (eds), The Mollusca. Volume 12. Paleontology and neontology of cephalopods. Academic Press, London: 253–276.

    Chapter  Google Scholar 

  • Warnke, K., 1998. Diversitat des Artenkomplexes Octopus cf. vulgaris Cuvier, 1797 in “Beziehung zu seiner Verbreitung an der Ost- und Westkuste Lateinamerikas,” PhD thesis. University of Bremen, Shaker Verlag, Aachen.

  • Yoder, A. D., J. A. Irwin & B. A. Payseur, 2001. Failure of the ILD to determine data combinability for slow loris phylogeny. Systematic Biology 50: 408–424.

    Article  CAS  PubMed  Google Scholar 

  • Yokobori, S., D. J. Lindsay, M. Yoshida, K. Tsuchiya, A. Yamagishi, T. Maruyama & T. Oshima, 2007. Mitochondrial genome structure and evolution in the living fossil vampire squids, Vampyroteuthis infernalis, and extant cephalopods. Molecular Phylogenetics and Evolution 44: 898–910.

    Article  CAS  PubMed  Google Scholar 

  • Young, R. E. & M. Vecchione, 1996. Analysis of morphology to determine primary sister taxon relationships within coleoid cephalopods. American Malacological Bulletin 12: 91–112.

    Google Scholar 

  • Young, R. E., M. Vecchione & D. T. Donovan, 1998. The evolution of coleoid cephalopods and their present biodiversity and ecology. South African Journal of Marine Science 20: 393–420.

    Article  Google Scholar 

Download references

Acknowledgments

Jan Strugnell was supported by Natural Environment Research Council (NERC) Antarctic Funding Initiative (AFI) NE/C506321/1 (awarded to Louise Allcock), and a Lloyd’s Tercentenary Fellowship, a Systematic Association grant, an Antarctic Science Bursary and the Edith Mary Pratt Musgrave fund. We are grateful to David Carlini, Joao Sendao, C.C. Lu, Malcom Smale, Sean Fennessey, Janet Voight and Roger Villanueva for providing tissue samples which made this study possible. The majority of the analyses in this paper were done on the CamGrid cluster at the University of Cambridge and we are grateful to the Cambridge eScience Centre for its support of the system.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan M. Strugnell.

Additional information

Guest editors: Erica A. G. Vidal, Mike Vecchione & Sigurd von Boletzky / Cephalopod Life History, Ecology and Evolution

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strugnell, J.M., Norman, M.D., Vecchione, M. et al. The ink sac clouds octopod evolutionary history. Hydrobiologia 725, 215–235 (2014). https://doi.org/10.1007/s10750-013-1517-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-013-1517-6

Keywords

Navigation