Skip to main content
Log in

Covariant Newtonian and relativistic dynamics of (magneto)-elastic solid model for neutron star crust

General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

This work develops the dynamics of a perfectly elastic solid model for application to the outer crust of a magnetised neutron star. Particular attention is given to the Noether identities responsible for energy-momentum conservation, using a formulation that is fully covariant, not only (as is usual) in a fully relativistic treatment but also (sacrificing accuracy and elegance for economy of degrees of gravitational freedom) in the technically more complicated case of the Newtonian limit. The results are used to obtain explicit (relativistic and Newtonian) formulae for the propagation speeds of generalised (Alfven type) magneto-elastic perturbation modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Carter, B., Khalatnikov, I.M.: Momentum, vorticity, and helicity in covariant superfluid dynamics. Ann. Phys. 219, 243–265 (1992)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. Langlois, D., Sedrakian, D., Carter, B.: Differential rotation of relativistic superfluid in neutron stars. Mon. Not. R. Astr. Soc. 297, 1198–1201 (1998) [astro-ph/9711042]

    Google Scholar 

  3. Kunzle, H.P.: Lagrangian formalism for adiabatic fluids on five-dimensional space-time. Canad. J. Phys. 64, 185–189 (1986)

    ADS  MathSciNet  Google Scholar 

  4. Duval, C., Gibbons, G., Horvathy, P.: Celestial mechanics, conformal structures, and gravitational waves. Phys. Rev. D 43, 3907–3902 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  5. Carter, B., Khalatnikov, I.M.: Canonically covariant formulation of Landau's Newtonian superfluid dynamic. Rev. Math. Phys. 6, 277–304 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cartan, E.: Sur les varits connexion affine et la thorie de la relativit generalise. Ann. Sci. Ecole Norm. Sup. 40, 325–412 (1923); Ann. Sci. Ecole Norm. Sup. 41, 1–25 (1924); Ann. Sci. Ecole Norm. Sup. 42, 17–88 (1925)

    Google Scholar 

  7. Carter, B., Chamel, N.: Covariant analysis of Newtonian multi-fluid models for neutron stars: I Milne – Cartan structure and variational formulation. Int. J. Mod. Phys. D 13, 291–325 (2004) [astro-ph/0305186]

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. Carter, B., Chamel, N.: Covariant analysis of Newtonian multi-fluid models for neutron stars: II Stress - energy tensors and virial theorems. Int. J. Mod. Phys. D14, 717 (2005) [astro–ph/0312414]

  9. Carter, B., Chamel, N.: Covariant analysis of Newtonian multi-fluid models for neutron stars: III Transvective, viscous, and superfluid drag dissipation. Int. J. Mod. Phys. D14, 749 (2005) [astro-ph/0410660]

  10. Battye, R.A., Carter, B., Chachoua, E., Moss, A.: Rigidity and stability of cold dark solid universe model. to appear in Phys. Rev. D (2005) [hep-th/0501244]

  11. Palmer, D.M. et al.: A Giant γ-ray flare from the magnetar SGR 1806–20. Nature 434, 1107–1109 (2005) [astro-ph/0503030]

    Article  PubMed  ADS  Google Scholar 

  12. Eichler, D.: Waiting for the big one: a new class of soft gamma ray repeater outbursts. Mon. Not. R. Astr. Soc. 335, 883–886 (2002) [astro-ph/0204512]

    Article  ADS  Google Scholar 

  13. Hurley, K. et al.: An exceptionally bright flare from SGR 1806–20 and the origins of short-duration γ-ray bursts. Nature 434, 1098–1103 (2005) [astro-ph/0502329]

    Article  PubMed  ADS  Google Scholar 

  14. Trautman, A.: Invariance properties and conservation laws. In: Trautman, A., Pirani, F.A.E., Bondi, H. (eds.), Brandeis Lectures on General Relativity, pp. 158–200. Prentice Hall, New Jersey (1965)

  15. Carter, B.: Elastic perturbation theory in general relativity and a variational principle for a rotating solid star. Commun. Math. Phys. 30, 261–286 (1973)

    Article  MATH  ADS  Google Scholar 

  16. Carter, B.: Covariant Theory of Conductivity in Ideal Fluid or Solid Media. In: Carter, B., Anile, A.M., Choquet-Bruhat, Y. (eds.), Relativistic Fluid Dynamics C.I.M.E., Noto. (1987) Lecture Notes in Mathematics, vol. 1385, pp. 1–64. Springer-Verlag, Heidelberg (1989)

  17. Schutz, B.: Perfect fluids in general relativity: velocity potentials and a variational principle. Phys. Rev. D 2, 2762–2773 (1970)

    Article  ADS  MathSciNet  Google Scholar 

  18. Landau, L.D., Lifshitz, E.M.: Theory of Elasticity. Pergamon, London (1959)

    Google Scholar 

  19. Souriau, J.M.: Géometrie et Relativité. Herman, Paris (1965)

    Google Scholar 

  20. DeWitt, B.: The quantisation of geometry. In: Witten, L. (ed.), Gravitation: An Introduction to Current Research, pp. 266–381. Wiley, New York (1962)

    Google Scholar 

  21. Carter, B., Quintana, H.: Foundations of general relativistic high pressure elasticity theory. Proc. Roy. Soc. Lond. A 331, 57–83 (1972)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. Carter, B.: Interaction of Gravitational Waves with an Elastic Solid Medium. In: Deruelle, N., Piran, T. (eds.), Gravitational Radiation (Proc. 1982 Les Houches Summer School), pp. 455–464. North Holland, Amsterdam (1983) [gr-qc/0102113]

  23. Carter, B.: Kalb-Ramond vorticity variational formulation of relativistic perfectly conducting fluid theory. Int. J. Mod. Phys. D 3, 15–21 (1974)

    Article  ADS  Google Scholar 

  24. Carter, B.: Vortex dynamics in superfluids. In: Bunkov, Yu.M., Godfrin, H. (eds.), Topological Defects and Non-equilibrium Dynamics of Symmetry Breaking Phase Transitions. (NATO ASI vol. C549. Les Houches 1999), pp. 267–301. Kluwer, Dordrecht (2000) [gr-qc/9907039]

  25. Carter, B.: Speed of sound in a high pressure general relativistic solid. Phys. Rev. D 7, 1590–1593 (1973)

    Article  ADS  Google Scholar 

  26. Carter, B., Gaffet, B.: Standard covariant formulation for perfect fluid dynamics. J. Fluid. Mech. 186, 1–24 (1988)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  27. Bekenstein, J.D., Oron, A.: Conservation of circulation in magnetohydrodynamics. Phys. Rev. E 62, 5594–5603 (2000) [astro-ph/0002045]

    Article  ADS  MathSciNet  Google Scholar 

  28. Bekenstein, J.D., Oron, E.: New conservation laws in general-relativistic magnetohydrodynamics. Phys. Rev. D 18, 1809–1819 (1978)

    Article  ADS  Google Scholar 

  29. Woltjer, L.: A theorem on force-free magnetic fields. Proc. Nat. Acad. Sci. USA 44, 489–491 (1958)

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Carter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carter, B., Chachoua, E. & Chamel, N. Covariant Newtonian and relativistic dynamics of (magneto)-elastic solid model for neutron star crust. Gen Relativ Gravit 38, 83–119 (2006). https://doi.org/10.1007/s10714-005-0210-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-005-0210-0

Keywords

Navigation