Skip to main content
Log in

Natural selection and divergence in mate preference during speciation

Genetica Aims and scope Submit manuscript

Abstract

Sexual isolation can evolve due to natural selection against hybrids (reinforcement). However, many different forms of hybrid dysfunction, and selective processes that do not involve hybrids, can contribute to the evolution of sexual isolation. Here we review how different selective processes affect the evolution of sexual isolation, describe approaches for distinguishing among them, and assess how they contribute to variation in sexual isolation among populations of Timema cristinae stick-insects. Pairs of allopatric populations of T. cristinae living on different host-plant species exhibit greater sexual isolation than those on the same host, indicating that some sexual isolation has evolved due to host adaptation. Sexual isolation is strongest in regions where populations on different hosts are in geographic contact, a pattern of reproductive character displacement that is indicative of reinforcement. Ecological costs to hybridization do occur but traits under ecological selection (predation) do not co-vary strongly with the probability of between-population mating such that selection on ecological traits is not predicted to produce a strong correlated evolutionary response in mate preference. Moreover, F1 hybrid egg inviability is lacking and the factors contributing to reproductive character displacement require further study. Finally, we show that sexual isolation involves, at least in part, olfactory communication. Our results illustrate how understanding of the evolution of sexual isolation can be enhanced by isolating the roles of diverse ecological and evolutionary processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Albert A, Schluter D (2004) Reproductive character displacement of male stickleback mate preference: reinforcement or direct selection? Evolution 58:1099–1107

    PubMed  CAS  Google Scholar 

  • Arn H, Städler E, Rauscher S (1975) The electroantennographic detector—a selective and sensitive tool in the gas chromatographic analysis of insect pheromones. Z Naturforsch 30c:722–725

    CAS  Google Scholar 

  • Arnold SJ (1992) Constraints on phenotypic evolution. Am Nat 140:S85–S107

    PubMed  Google Scholar 

  • Barbash DA, Awadalla P, Tarone AM (2004) Functional divergence caused by ancient positive selection of a Drosophila hybrid incompatibility locus. PLOS Biol 2:839–848

    CAS  Google Scholar 

  • Barton NH, Turelli M (1991) Natural and sexual selection on many loci. Genetics 127:229–225

    PubMed  CAS  Google Scholar 

  • Bateson W (1909) Heredity and variation in modern lights. In: Seward AC, (ed) Darwin and modern science. Cambridge University Press, Cambridge, pp 85–101

    Google Scholar 

  • Boake C, DeAngelis MP, Andreadis DK (1997) Is sexual selection and species recognition a continuum? Mating behavior of the stalk-eyed fly Drosophila heteroneura. Proc Natl Acad Sci USA 94:12442–12445

    PubMed  CAS  Google Scholar 

  • Bordenstein SR, Drapeau MR, Werren JH (2000) Intraspecific variation in sexual isolation in the jewel wasp Nasonia. Evolution 54:567–573

    PubMed  CAS  Google Scholar 

  • Boughman JW (2002) How sensory drive can promote speciation. Trends Ecol Evol 10:1–7

    Google Scholar 

  • Boughman JW, Rundle HD, Schluter D (2005) Parallel evolution of sexual isolation in sticklebacks. Evolution 59:361–373

    PubMed  Google Scholar 

  • Bradshaw HD, Schemske DW (2003) Allele substitution at a flower colour locus produces a pollinator shift in monkeyflowers. Nature 426:176–178

    PubMed  CAS  Google Scholar 

  • Butlin RK (1995) Reinforcement: an idea evolving. Trends Ecol Evol 10:432–433

    Google Scholar 

  • Cheverud JM (1988) A comparison of genetic and phenotypic correlations. Evolution 42:958–968

    Google Scholar 

  • Church SA, Taylor DR (2002) The evolution of reproductive isolation in spatially structured populations. Evolution 56:1859–1862

    PubMed  Google Scholar 

  • Claridge MF, Morgan JC (1993) Geographical variation in acoustic signals of the planthopper, Nilaparvata bakeri (Muir), in Asia: species recognition and sexual selection. Biol J Linn Soc 48:267–281

    Google Scholar 

  • Cognato AI, Seybold SJ, F.Sperling FAH (1999) Incomplete barriers to mitochondrial gene flow between pheromone races of the North American pine engraver, Ips pini (Say) (Coleoptera : Scolytidae). Proc R Soc Lond B 266:1843–1850

    Google Scholar 

  • Coyne JA, Orr HA (1989) Patterns of speciation in Drosophila. Evolution 43:362–381

    Google Scholar 

  • Coyne JA, Orr HA (1997) Patterns of speciation in Drosophila revisited. Evolution 51:295–303

    Google Scholar 

  • Coyne JA, Orr HA (2004) Speciation. Sinauer, Sunderland, MA

    Google Scholar 

  • Crespi BJ, Sandoval CP (2000) Phylogenetic evidence for the evolution of ecological specialization in Timema walking-sticks. J Evol Biol 13:249–262

    Google Scholar 

  • Cruz R, Rolan-Alvarez E, Garcia C (2001) Sexual selection on phenotypic traits in a hybrid zone of Littorina saxatilis (Olivi). J Evol Biol 14:773–785

    Google Scholar 

  • Cruz R, Carballo M, Conde-Padin P, Rolan-Alvarez E, (2004) Testing alternative models for sexual isolation in natural populations of Littorina saxatilis: indirect support for by-product ecological speciation? J Evol Biol 17:288–293

    PubMed  CAS  Google Scholar 

  • Day T (2000) Sexual selection and the evolution of costly female preferences: spatial effects. Evolution 54:715–730

    PubMed  CAS  Google Scholar 

  • Dobzhansky T (1936) Studies on hybrid sterility. II. Localization of sterility factors in Drosophila pseudoobscura hybrids. Genetics 121:113–125

    Google Scholar 

  • Dobzhansky T (1937) Genetics and the origin of species. Columbia University Press, New York

    Google Scholar 

  • Endler JA (1986) Natural selection in the wild. Princeton University Press, Princeton, New Jersey

    Google Scholar 

  • Endler JA (1992) Signals, signal conditions, and the direction of evolution. Am Nat 139:125–153

    Google Scholar 

  • Etges WJ (2002) Divergence in mate choice systems: does evolution play by the rules? Genetica 116:151–166

    PubMed  CAS  Google Scholar 

  • Fisher RA (1930) The genetical theory of natural selection. Claredon press, Oxford

    Google Scholar 

  • Fordyce JA, Nice CC, Forister ML, Shapiro AM (2002) The significance of wing pattern diversity in the Lycaenidae: mate discrimination by two recently diverged species. J Evol Biol 15:871–879

    Google Scholar 

  • Fuller RC, Houle D, Travis J (2005) Sensory bias as an explanation for the evolution of mate preferences. Am Nat 166:437–446

    PubMed  Google Scholar 

  • Funk DJ (1998) Isolating a role for natural selection in speciation: host adaptation and sexual isolation in Neochlamisus bebbianae leaf beetles. Evolution 52:1744–1759

    Google Scholar 

  • Funk DJ, Filchak KE, Feder JL (2002) Herbivorous insects: model systems for the comparative study of speciation ecology. Genetica 116:251–267

    PubMed  Google Scholar 

  • Funk DJ, Nosil P, Etges W (2006) Ecological divergence exhibits consistently positive associations with reproductive isolation across disparate taxa. Proc Natl Acad Sci USA 103:3209–3213

    Google Scholar 

  • Gavrilets S (2004) Fitness landscapes and the origin of species. Princeton Univ. Press, Princeton, NJ

    Google Scholar 

  • Gries G, Gries R, Schaefer PW, Gotoh T, Higashiura Y (1999) Sex pheromone components of pink gypsy moth, Lymantria mathura. Naturwissenschaften 86:235–238

    CAS  Google Scholar 

  • Gries R, Khaskin G, Gries G, Bennett RG, King GG, Morewood P, Slessor KN, Moorewood WD (2002) (Z,Z)-4, 7-Tridecadien-(S)-2-yl acetate: sex pheromone of Douglas-fir cone gall midge, Contarinia oregonensis. J Chem Ecol 28:2283–2297

    PubMed  CAS  Google Scholar 

  • Gries R, Khaskin G, Khaskin E, Foltz K, Schaefer PW, Gries G (2003) Enantiomers of (Z,Z)-6,9-heneicosadien-11-ol: sex pheromone components of Orgyia detrita. J Chem Ecol 29:2201–2212

    PubMed  CAS  Google Scholar 

  • Hager BJ, Teale SA 1996. The genetic control of pheromone production and response in the pine engraver beetle Ips pini. Heredity 77:100–107

    Google Scholar 

  • Hatfield T, Schluter D (1999) Ecological speciation in sticklebacks: environment dependent hybrid fitness. Evolution 53:866–873

    Google Scholar 

  • Higgie M, Chenoweth S, Blows MW (2000) Natural selection and the reinforcement of mate recognition. Science 290:519–521

    PubMed  CAS  Google Scholar 

  • Hobel G, Gerhardt HC (2003) Reproductive character displacement in the acoustic communication system of green tree frogs (Hyla cinerea). Evolution 57:894–904

    PubMed  Google Scholar 

  • Hoskin CJ, Higgie M, McDonald KR, Moritz C (2005) Reinforcement drives rapid allopatric speciation. Nature 437:1353–1356

    PubMed  CAS  Google Scholar 

  • Howard DJ, Gregory PG (1993) Post-insemination signaling systems and reinforcement. Phil Trans R Soc Lond B 340:231–236

    Google Scholar 

  • Jiggins CD, Naisbit RE, Coe RL, Mallet J (2001) Reproductive isolation caused by colour pattern mimicry. Nature 411:302–305

    PubMed  CAS  Google Scholar 

  • Jiggins CD, Estrada C, Rodrigues A (2004) Mimicry and the evolution of premating isolation in Heliconius melpomene Linnaeus. J Evol Biol 17:680–691

    PubMed  CAS  Google Scholar 

  • Johannesson K, Larsson A, Cruz R, Garcia C, Rolan-Alvarez E, (2000) Hybrid fitness seems not to be an explanation for the partial reproductive isolation between ecotypes of Galician Littorina saxatilis. J Moll Stud 66:149–156

    Google Scholar 

  • Kelly JK, Noor MAF (1996) Speciation by reinforcement: a model derived from studies of Drosophila. Genetics 143:1485–1497

    PubMed  CAS  Google Scholar 

  • Kirkpatrick M (1996) Good genes and direct selection in evolution of mating preferences. Evolution 50:2125–2140

    Google Scholar 

  • Kirkpatrick M (2001) Reinforcement during ecological speciation. Proc R Soc London B 268:1259–1263

    CAS  Google Scholar 

  • Kirkpatrick M, Ryan MJ (1991) The evolution of mating preferences and the paradox of the lek. Nature 350:33–38

    Google Scholar 

  • Kirkpatrick M, Barton NH (1997) The strength of indirect selection on female mating preferences. Proc Natl Acad Sci USA 94:1282–1286

    PubMed  CAS  Google Scholar 

  • Kirkpatrick M, Servedio MR (1999) The reinforcement of mating preferences on an island. Genetics 151:865–884

    PubMed  CAS  Google Scholar 

  • Kirkpatrick M, Ravigné V 2002. Speciation by natural and sexual selection: models and experiments. Am Nat 159:S22-S35

    PubMed  Google Scholar 

  • Kirkpatrick M, Johnson T, Barton N (2002) General models of multilocus evolution. Genetics 161:1727–1750

    PubMed  Google Scholar 

  • Leal M, Fleishman LJ (2004) Differences in visual signal design and detectability between allopatric populations of Anolis lizards. Am Nat 163:26–39

    PubMed  Google Scholar 

  • Lemmon AR, Smadja C, Kirkpatrick M (2004) Reproductive character displacement is not the only possible outcome of reinforcement. J Evol Biol 17:177–183

    PubMed  CAS  Google Scholar 

  • Lu G, Bernatchez L (1998) Experimental evidence for reduced hybrid viability between dwarf and normal ecotypes of lake whitefish (Coregonus clupeaformis Mitchell). Proc R Soc Lond B 265:1025–1030

    Google Scholar 

  • Mallet J, McMillan WO, Jiggins CD (1998) Mimicry and warning color at the boundary between races and species In: Howard DJ, Berlocher S (eds) Endless forms: species and speciation. Oxford University Press, Oxford, pp 390–403

    Google Scholar 

  • Mayr E (1947) Ecological factors in speciation. Evolution 1:263–288

    Google Scholar 

  • Mayr E (1963) Animal species and evolution. Harvard University Press, Cambridge

    Google Scholar 

  • McKinnon JS, Mori S, Blackman BK, Kingsley DL, Jamieson L, Chou J, Schluter D (2004) Evidence for ecology’s role in speciation. Nature 429:294–298

    PubMed  CAS  Google Scholar 

  • Mendelson TC (2003) Sexual isolation evolves faster than hybrid inviability in a diverse and sexually dimorphic genus of fish (Percidae: Etheostoma). Evolution 57:317–327

    PubMed  Google Scholar 

  • Millar JG, Giblin M, Barton D, Morrison A, Underhill EW (1990) Synthesis and field testing of enantiomers of 6Z,9Z-cis-epoxydienes as sex attractants for geometrid moths. Interaction of enantiomers and regioisomers J Chem Ecol 16:2317–2339

    CAS  Google Scholar 

  • Millar JG, Giblin M, Barton D, Underhill EW (1991) Chiral lepidopteran sex attractants: blends of optically active C20 and C21 diene epoxides as sex attractants for geometrid and noctuid moths (Lepidoptera). Environ Entomol 20:450–457

    CAS  Google Scholar 

  • Miller DR, Borden JH, Slessor KN (1996) Enantiospecific pheromone production and response profiles for populations of pine engraver, Ips pini (Say) (Coleoptera: Scolytidae), in British Columbia. J Chem Ecol 22:2157–2172

    CAS  Google Scholar 

  • Morton ES (1975) Ecological sources of selection on avian sounds. Am Nat 109:17–34

    Google Scholar 

  • Muller HJ (1942) Isolating mechanisms, evolution and temperature. Biol Symp 6:71–125

    Google Scholar 

  • Nagel L, Schluter D (1998) Body size, natural selection, and speciation in sticklebacks. Evolution 52:209–218

    Google Scholar 

  • Naisbit RE, Jiggins CD, Mallet J (2001) Disruptive sexual selection against hybrids contributes to speciation between Helioconius cydno and Helioconius melpomene. Proc R Soc Lond B 268:1849–1854

    CAS  Google Scholar 

  • Nei N, Li W-H, (1973) Linkage disequilibrium in subdivided populations. Genetics 75:213–219

    PubMed  CAS  Google Scholar 

  • Noor MAF, (1995) Speciation driven by natural selection in Drosophila. Nature 375:674–675

    PubMed  CAS  Google Scholar 

  • Noor MAF, (1997) Genetics of sexual isolation and courtship dysfunction in male hybrids of Drosophila pseudoobscura and Drosphila persimilis. Evolution 51:809–815

    Google Scholar 

  • Norusis MN (1993) SPSS for Windows. Advanced Statistics. SPSS Inc., Michigan

  • Nosil P (2004) Reproductive isolation caused by visual predation on migrants between divergent environments. Proc R Soc Lond B 271:1521–1528

    Google Scholar 

  • Nosil P, Crespi BJ (2004) Does gene flow constrain adaptive divergence or vice versa? A test using ecomorphology and sexual isolation in Timema cristinae walking-sticks. Evolution 58:102–112

    PubMed  CAS  Google Scholar 

  • Nosil P, Crespi BJ, Sandoval CP (2002) Host-plant adaptation drives the parallel evolution of reproductive isolation. Nature 417:441–443

    Google Scholar 

  • Nosil P, Crespi BJ, Sandoval CP (2003) Reproductive isolation driven by the combined effects of ecological adaptation and reinforcement. Proc R Soc Lond B 270:1911–1918

    CAS  Google Scholar 

  • Nosil P, Vines TH, Funk DJ (2005) Perspective: reproductive isolation caused by natural selection against immigrants from divergent habitats. Evolution 59:705–719

    PubMed  Google Scholar 

  • Nosil P, Crespi BJ, Sandoval CP, 2006a. The evolution of host preference in allopatric versus parapatric populations of T. cristinae walking-sticks. J Evol Biol 19:929–942

    CAS  Google Scholar 

  • Nosil P, Crespi BJ, Sandoval CP, Kirkpatrick M, 2006b. Migration and the genetic covariance between habitat preference and performance. Am Nat 167:E66–E78

    CAS  Google Scholar 

  • Nosil P, Crespi BJ (2006) Cryptic reproductive isolation driven by ecological divergence. Proc R Soc Lond B 273:991–997

    Google Scholar 

  • Orr HA, Turelli M (2001) The evolution of postzygotic isolation: accumulating Dobzhansky-Muller incompatibilities. Evolution 55:1085–1094

    PubMed  CAS  Google Scholar 

  • Orr HA, Orr LH (1996) Waiting for speciation: the effect of population subdivision on the time to speciation. Evolution 50:1742–1749

    Google Scholar 

  • Ortiz-Barrientos D., Counterman BA, Noor MAF (2004) The genetics of speciation by reinforcement. PLOS Biol 2:2256–2263

    CAS  Google Scholar 

  • Panhuis TM, Butlin R, Zuk M, Tregenza T (2001) Sexual selection and speciation. Trends Ecol Evol 16:364–371

    PubMed  Google Scholar 

  • Patten MA, Rotenberry JT, Zuk M (2004) Habitat selection, acoustic adaptation, and the evolution of reproductive isolation. Evolution 58:2144–2155

    PubMed  Google Scholar 

  • Palumbi SR (1998) Species formation and the evolution of gamete recognition loci. In: Howard DJ, Berlocher SH (eds) Endless forms: Species and Speciation. Oxford University Press, New York, pp 271–278

    Google Scholar 

  • Phelan PL, Baker TC (1987) Evolution of male pheromones in moths: reproductive isolation through sexual selection? Science 235:205–207

    PubMed  Google Scholar 

  • Podos J (2001) Correlated evolution of morphology and vocal signal structure in Darwin’s finches. Nature 409:185–188

    PubMed  CAS  Google Scholar 

  • Presgraves DC, Balagopalan L, Abmayr SM, Orr HA (2003) Adaptive evolution drives divergence of a hybrid inviability gene between two species of Drosophila. Nature 423:715–719

    PubMed  CAS  Google Scholar 

  • Ramsey J, Bradshaw HD, Schemske DW (2003) Components of␣reproductive isolation between the monkeyflowers Mimulus lewissii and M. cardinalis (Phrymaceae). Evolution 57: 1520–1534

    PubMed  Google Scholar 

  • Richmond JQ, Reeder TW (2002) Evidence for parallel ecological speciation in scincid lizards of the Eumeces skiltonianus species group (Squamata: Scincidae). Evolution 56:1498–1513

    PubMed  CAS  Google Scholar 

  • Rolan-Alvarez E, Johannesson K, Erlandsson J (1997) The maintenance of a cline in the marine snail Littorina saxatilis: the role of home site advantage and hybrid fitness. Evolution 51:1838–1847

    Google Scholar 

  • Rolan-Alvarez E, Caballero A (2000) Estimating sexual selection and sexual isolation effects from mating frequencies. Evolution 54:30–36

    PubMed  CAS  Google Scholar 

  • Rundle HD (2002) A test of ecologically dependent postmating isolation between sympatric sticklebacks. Evolution 56:322–329

    PubMed  Google Scholar 

  • Rundle HD, Schluter D (1998) Reinforcement of stickleback mating preferences: sympatry breeds contempt. Evolution 52:200–208

    Google Scholar 

  • Rundle HD, Nagel L, Boughman JW, Schluter D (2000) Natural selection and parallel speciation in sympatric sticklebacks. Science 287:306–308

    PubMed  CAS  Google Scholar 

  • Rundle HD, Whitlock M (2001) A genetic interpretation of ecologically dependent isolation. Evolution 55:198–201

    PubMed  CAS  Google Scholar 

  • Rundle HD, Nosil P (2005) Ecological speciation. Ecol Letts 8:336–352

    Google Scholar 

  • Ryan MJ, Cocroft RB, Wilczynski W (1990) The role of environmental selection in intraspecific divergence of mate recognition signals in the cricket frog, Acris crepitans. Evolution 44:1869–1872

    Google Scholar 

  • Ryan MJ, Wilczynski W (1991) Evolution of intraspecific variation in the advertisement call of a cricket frog (Acris crepitans, Hylidae). Biol J Linn Soc 44:249–271

    Google Scholar 

  • Ryan MJ, Rand AS (1993) Species recognition and sexual selection as a unitary problem in animal communication. Evolution 47:647–657

    Google Scholar 

  • Saetre GP, Moum T, Bures S, Kral M, Adamjan M, Moreno J. 1997. A sexually selected character displacement in flycatchers reinforces premating isolation. Nature 387:589–592

    CAS  Google Scholar 

  • Saldamando CI, Tatsuta H, Butlin RK (2005) Hybrids between Chorthippus brunneus and C-jacobsi (Orthoptera: Acrididae) do not show endogenous postzygotic isolation. Biol J Linn Soc 84:195–203

    Google Scholar 

  • Sandoval CP (1993) Geographic, ecological and behavioral factors affecting spatial variation in color or morph frequency in the walking-stick Timema cristinae. PhD Thesis. University of California, Santa Barbara

  • Sandoval CP, 1994a. The effects of relative geographic scales of gene flow and selection on morph frequencies in the walking stick Timema cristinae. Evolution 48:1866–1879

    Google Scholar 

  • Sandoval CP, 1994b. Differential visual predation on morphs of Timema cristinae (Phasmatodeae: Timemidae) and its consequences for host range. Biol J Linn Soc 52:341–356

    Google Scholar 

  • Sandoval CP, Nosil P (2005) Counteracting selective regimes and host preference evolution in ecotypes of two species of walking-sticks. Evolution 59:2405–2413

    PubMed  CAS  Google Scholar 

  • Schemske DW, Bradshaw HD (1999) Pollinator preference and the evolution of floral traits in monkeyflowers (Mimulus). Proc Natl Acad Sci USA 96:11910–11915

    PubMed  CAS  Google Scholar 

  • Schluter D (1996) Adaptive radiation along genetic lines of least resistance. Evolution 50:1766–1774

    Google Scholar 

  • Schluter D (2000) The ecology of adaptive radiation. Oxford University Press, Oxford

    Google Scholar 

  • Seddon N (2005) Ecological adaptation and species recognition drives vocal evolution in neotropical suboscine birds. Evolution 59:200–215

    PubMed  Google Scholar 

  • Servedio MR (2000) Reinforcement and the genetics of nonrandom mating. Evolution 54:21–29

    PubMed  CAS  Google Scholar 

  • Servedio M (2001) Beyond reinforcement: the evolution of premating isolation by direct selection on preferences and␣postmating, prezygotic incompatibilities. Evolution 55: 1909–1920

    PubMed  CAS  Google Scholar 

  • Servedio M (2004) The evolution of premating isolation: local adaptation and natural and sexual selection against hybrids. Evolution 58:913–924

    PubMed  Google Scholar 

  • Servedio M, Noor M (2003) The role of reinforcement in speciation: theory and data. Annu R Ecol Syst 34:339–364

    Google Scholar 

  • Seybold SJ, Quilici DR, Tillman JA, Vanderwel D, Wood DL, Blomquist GJ (1995) De novo biosynthesis of the aggregation pheromone components ipsenol and ipsdienol by the pine bark beetles Ips paraconfusus Lanier and Ips pini (Say) (Coleoptera: Scolytidae). Proc Natl Acad Sci USA 92:8393–8397

    PubMed  CAS  Google Scholar 

  • Shaw KL, Parsons YM (2002) Divergence of mate recognition behavior and its consequences for genetic architectures of speciation. Am Nat 159:S61–S75

    PubMed  Google Scholar 

  • Shuker DM, Underwood K, King TM, Butlin RK (2005) Patterns of male sterility in a grasshopper hybrid zone imply accumulation of hybrid incompatibilities without selection. Proc R Soc Lond B 272:2491–2497

    Google Scholar 

  • Slabbekoorn H, Smith TB (2002) Habitat-dependent song divergence in the little greenbul: an analysis of selection pressures on acoustic signals. Evolution 56:1849–1858

    PubMed  Google Scholar 

  • Staddon BW, Everton IJ (1980) Haemolymph of milkweed bug Oncopeltus fasciatus (Heteroptera: Lygaeidae): inorganic constituents and amino acids. Comp Biochem Physiol 65:371–374

    Google Scholar 

  • Swanson WJ, Vacquier VD (2002) The rapid evolution of reproductive proteins. Nat Rev Genet 3:137–144

    PubMed  CAS  Google Scholar 

  • Takacs S, Gries G (2001) Communication ecology of webbing cloth moth: evidence for male produced aggregation signal(s). Can Entomol 133:725–727

    Article  Google Scholar 

  • Teale SA, Hager BJ, Webster FX (1994) Pheromone-based assortative mating in a bark beetle. Anim Behav 48:569–578

    Google Scholar 

  • Ting CT, Tsaur SC, Wu ML, Wu CI (1998) A rapidly evolving homeobox at the site of a hybrid sterility gene. Science 282:1501–1504

    PubMed  CAS  Google Scholar 

  • Vacquier VD, Swanson WJ, Lee YH (1997) Positive Darwinian selection on two homologous fertilization proteins: what is the selective pressure driving their divergence? J Mol Evol 44:S15–S22

    PubMed  CAS  Google Scholar 

  • Vamosi SM, Schluter D (1999) Sexual selection against hybrids between sympatric stickleback species: evidence from a field experiment. Evolution 53:874–879

    Google Scholar 

  • Van den Dool H, Kratz PD (1963) A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J Chromatogr 2:463–471

    Google Scholar 

  • Vet LEM, (1983) Host-habitat location through olfactory cues by Leptopilina clavipes (Hartig) (Hym.: Eucoilidae), a parasitoid of fungivorous Drosophila: the influence of conditioning. Netherlands J Zool 33:225–248

    Article  Google Scholar 

  • Vines TH, Schluter D (2006) Strong assortative mating between allopatric sticklebacks as a by-product of adaptation to different environments. Proc R Soc Lond B 273:911–916

    Google Scholar 

  • Wasserman M, Koepfer HR (1977) Character displacement for␣sexual isolation between Drosophila mojavensis and Drosophila arizonensis. Evolution 31:812–823

    Google Scholar 

  • Williams MA, Blouin AG, Noor MAF (2001) Courtship songs of Drosophila pseudoobscura and D. persimilis. II. Genetics of species differences. Heredity 86:68–77

    PubMed  CAS  Google Scholar 

  • Willis JH, Coyne JA, Kirkpatrick M (1991) Can one predict the␣evolution of quantitative characters without genetics? Evolution 45:441–444

    Google Scholar 

  • Wu CI, Ting CT (2004) Genes and speciation. Nat Rev Genet 5:114–122

    PubMed  CAS  Google Scholar 

  • Zouros E, d’Entremont CJ, (1980) Sexual isolation among populations of Drosophila mojavensis: response to pressure from a related species. Evolution 34:421–430

    Google Scholar 

Download references

Acknowledgements

We thank T.E. Reimchen, M. Kirkpatrick, A. Mooers, B. Counterman, D. Schluter, C.P. Sandoval, J.␣Endler, W. Etges and three anonymous reviewers for discussion and comments on earlier versions of the paper. D. Mclaren, B. Mickelson, M. Vankoeveringe, T. Luchin, M. Javid, T. Leversage, H. Brackett, D. Wick, J. Smith, C. Paul, M. Zheng, and E. Lopez provided field and technical assistance. J. Endler (UCSB) kindly provided lab space. Financial support was provided by the Natural Sciences and Engineering Research Council (NSERC–Canada) through a PGS B scholarship to P.N., an NSERC grant to B.J.C., an NSERC-IRC to G.G. with Phero Tech Inc., S.C. Johnson Canada, and Global Forest as industrial sponsors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrik Nosil.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nosil, P., Crespi, B.J., Gries, R. et al. Natural selection and divergence in mate preference during speciation. Genetica 129, 309–327 (2007). https://doi.org/10.1007/s10709-006-0013-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-006-0013-6

Keywords

Navigation