Skip to main content
Log in

Genic heterozygosity, chromosomal interchanges and fitness in rye: any relationship?

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Relationship between heterozygosity at allozyme loci, chromosomal interchanges and fitness was analyzed in a rye cultivar showing a polymorphism for such rearrangements. Nine allozyme systems (ACO, ACPH, GOT, GPI, LAP, MDH, PER, PGD and PGM) and five components of fitness (number of fertile tillers, total offspring, egg cell fertility, flowers/ear and seeds/ear) were studied. The estimated selection coefficients against interchange heterozygotes ranged from s = 0.12 to s = 0.34. A significant effect of the genic heterozygosity on some fitness components was observed in interchange heterozygotes (tillering and total offspring), in their standard homozygous sibs (flowers/ear and seeds/ear) and in the descendants of the crosses between standard karyotypes (flowers/ear, seeds/ear and egg cell fertility). However, the main effect was linked to genetic background associated to different crosses. Significant differences for Acph-1, Gpi-1, Lap-1, Mdh-1, Mdh-4, Pgd-2 and Pgm-1 loci were also found in some of these crosses although these differences were inconsistent. This suggests that probably the allozyme loci analyzed were not directly contributing to the fitness and that they are linked, in some cases, to different deleterious alleles depending on both cross and locus. This fact could support the local effect hypothesis as explanation although we do not discard the existence of some inbreeding level (general effect hypothesis) since all crosses and loci studied show a overall consistent trend of increased fitness with increased heterozygosity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • F.A. Aravanopoulos L. Zsuffa (1998) ArticleTitleHeterozygosity and biomass production in Salix eriocephala Heredity 81 396–403 Occurrence Handle1:CAS:528:DyaK1cXnslKhsbc%3D Occurrence Handle10.1046/j.1365-2540.1998.00409.x

    Article  CAS  Google Scholar 

  • A.R. Beaumont J.E. Fairbrother K. Hoare (1995) ArticleTitleMultilocus heterozygosity and size: a test of hypotheses using triploid Mytilus edulis Heredity 75 256–266

    Google Scholar 

  • C. Benito F.J. Gallego C. Zaragoza J.M. Frade A.M. Figueiras (1991a) ArticleTitleBiochemical evidence of a translocation between 6RL/7RL chromosome arms in rye (Secale cereale L.). A genetic map of 6R chromosome Theor. Appl. Genet. 82 27–32 Occurrence Handle1:CAS:528:DyaK3MXmsFahsLY%3D

    CAS  Google Scholar 

  • C. Benito C. Zaragoza F.J. Gallego A. la Peña Particlede A.M. Figueiras (1991b) ArticleTitleA map of rye chromosome 2R using isozyme and morphological markers Theor. Appl. Genet. 82 112–116 Occurrence Handle1:CAS:528:DyaK3MXlsFGiu7o%3D

    CAS  Google Scholar 

  • Bierne, N., I. Beuzart, V.Vonau, F. Bonhomme & E. Bedier, AQUACOP 2000. Microsatellite-associated heterosis in hatchery-propagated stocks of the shrimp Penaeus stylirostris. Aquaculture 184: 203–219

  • C.R. Burnham (1962) Discussions in Cytogenetics Burgess Minneapolis

    Google Scholar 

  • M. Candela A.M. Figueiras J.R. Lacadena (1979) ArticleTitleMaintenance of interchange heterozygosity in cultivated rye (Secale cereale L.) Heredity 42 283–289

    Google Scholar 

  • M. Candela A.M. Figueiras J.R. Lacadena (1982) ArticleTitleMutation–selection equilibrium as a possible cause of a interchange chromosome polymorphism in a cultivar of rye (Secale cereale L.) Theor. Appl. Genet. 62 321–324

    Google Scholar 

  • D. Charlesworth (1991) ArticleTitleThe apparent selection on neutral marked loci in partially inbreeding populations Genet. Res. 57 159–175 Occurrence Handle10.1017/S0016672300029244

    Article  Google Scholar 

  • R.G. Danzmann M.M. Ferguson F.W. Allendorf (1988) ArticleTitleHeterozygosity and components of fitness in a strain of rainbow trout Biol. J. Linn. Soc. 33 285–304

    Google Scholar 

  • P. David (1998) ArticleTitleHeterozygosity-fitness correlations: new perspectives on old problems Heredity 80 531–537 Occurrence Handle9650277 Occurrence Handle10.1046/j.1365-2540.1998.00393.x

    Article  PubMed  Google Scholar 

  • P. David B. Delay P. Berthou P. Jarne (1995) ArticleTitleAlternative models for allozyme-associated heterosis in the marine bivalve Spisula ovalis Genetics 139 1719–1726 Occurrence Handle7789772 Occurrence Handle1:CAS:528:DyaK28Xht1Chu7k%3D

    PubMed  CAS  Google Scholar 

  • M.M. Ferguson (1992) ArticleTitleEnzyme heterozygosity and growth in rainbow trout: genetic and physiological explanations Heredity 68 115–122 Occurrence Handle1548139

    PubMed  Google Scholar 

  • A.M. Figueiras M.T. González-Jaén J. Salinas C. Benito (1985) ArticleTitleAssociation of isozymic alleles with a reciprocal translocation in cultivated rye (Secale cereale L.) Genetics 109 177–193 Occurrence Handle17246247

    PubMed  Google Scholar 

  • A.M. Figueiras M.T. González-Jaén M. Candela C. Benito (1988) ArticleTitleGenic heterozygosity maintained by chromosomal interchanges in rye Heredity 60 47–54

    Google Scholar 

  • A.M. Figueiras M.T. González-Jaén M. Candela (1990) ArticleTitleChromosomal identification and meiotic behaviour of reciprocal translocations in a rye polymorphic population. Evolutionary implications Theor. Appl. Genet. 79 686–692 Occurrence Handle10.1007/BF00226884

    Article  Google Scholar 

  • A.M. Figueiras A. la Peña Particlede C. Benito (1991a) ArticleTitleHigh mutability in rye (Secale cereale L.) Mut. Res. 264 171–177 Occurrence Handle1:CAS:528:DyaK38XlsFOisA%3D%3D Occurrence Handle10.1016/0165-7992(91)90073-D

    Article  CAS  Google Scholar 

  • A.M. Figueiras M.A. Elorrieta C. Benito (1991b) ArticleTitleGenetic and cytogenetic maps of chromosomes 1R, 4R and 7R in cultivated rye (Secale cereale L.) Genome 34 181–185

    Google Scholar 

  • O. Frydenberg (1963) ArticleTitlePopulation studies of a lethal mutant in Droshopila melanogaster. I. Behavior in populations with discrete generations Hereditas 50 89–116 Occurrence Handle10.1111/j.1601-5223.1963.tb01896.x

    Article  Google Scholar 

  • P.M. Gaffney T.M. Scott (1984) ArticleTitleGenetic heterozygosity and production traits in natural and hatchery populations of bivalves Aquaculture 42 289–302 Occurrence Handle10.1016/0044-8486(84)90108-X

    Article  Google Scholar 

  • D.W. Garton R.K. Koehn T.M. Scott (1984) ArticleTitleMultiple-locus heterozygosity and the physiological energetics of growth in the coot clam, Mulinia lateralis, from a natural population Genetics 108 445–455 Occurrence Handle6500257 Occurrence Handle1:STN:280:DyaL2M%2Flt1Cltg%3D%3D

    PubMed  CAS  Google Scholar 

  • B. Hansson L. Westerberg (2002) ArticleTitleOn the correlation between heterozygosity and fitness in natural populations Mol. Ecol. 11 2467–2474 Occurrence Handle12453232 Occurrence Handle10.1046/j.1365-294X.2002.01644.x

    Article  PubMed  Google Scholar 

  • A.J.B. Hawkins B.L. Bayne A.M. Day J. Rusin C.M. Worrall (1989) Genotype-dependent interrelations between energy metabolism and fitness J.S. Ryland P.A. Tyler (Eds) Reproduction, Genetics, and Distributions of Marine Organisms Olsen and Olsen Fredensborg 383–392

    Google Scholar 

  • P.W. Hedrick (1986) ArticleTitleGenetic polymorphism in heterogeneous environments: a decade later Annu. Rev. Syst. Ecol. 17 535–566 Occurrence Handle10.1146/annurev.es.17.110186.002535

    Article  Google Scholar 

  • D. Houle (1989) ArticleTitleAllozyme-associated heterosis in Drosophila melanogaster Genetics 123 789–801 Occurrence Handle2482224 Occurrence Handle1:CAS:528:DyaK3cXntFCjug%3D%3D

    PubMed  CAS  Google Scholar 

  • M. Kimura (1983) The Neutral Theory of Molecular Evolution Cambridge University Press Cambridge

    Google Scholar 

  • P.L. Leberg M.H. Smith O.E. Rhodes (1990) ArticleTitleThe association between heterozygosity and growth of deer fetuses is not explained by effects of the loci examined Evolution 44 454–458 Occurrence Handle10.2307/2409423

    Article  Google Scholar 

  • Ledig, F.T., 1986. Heterozygosity, heterosis and fitness in outbreeding plants, pp 77–104 in Conservation Biology (The Science of Scarcity and Diversity), edited by M.E. Soulé. Sinauer, NY

  • M. Lynch (1996) A quantitative-genetic perspective on conservation issues J.C. Avise J.L. Hamrick (Eds) Conservation Genetics: Case Histories from Nature Chapman & Hall NY 471–501

    Google Scholar 

  • M. Lynch B. Walsh (1998) Genetics and Analysis of Quantitative Traits Sinauer Associates Sunderland, MA

    Google Scholar 

  • A.L. Mallet E. Zouros K.E. Gartner-Kepkay K.R. Freeman (1986) ArticleTitleGenetics of growth in the blue mussel: family and enzyme heterozygosity effects Mar. Biol. 92 475–482 Occurrence Handle10.1007/BF00392507

    Article  Google Scholar 

  • M. Milošević D. Marinković (1989) ArticleTitleActivity of enzymes and fitness variation Genet. Sel. Evol. 21 17–32

    Google Scholar 

  • J.B. Mitton (1989) Physiological and demographic variation associated with allozyme variation D.E. Soltis P.S. Soltis (Eds) Isozymes in Plant Biology Dioscorides Press Portland, OR 127–145

    Google Scholar 

  • J.B. Mitton (1993) Theory and data pertinent to the relationship between heterozygosity and fitness N.C. Thornhill (Eds) The Natural History of Inbreeding and Outbreeding University of Chicago Press Chicago 17–41

    Google Scholar 

  • J.B. Mitton M.C. Grant (1984) ArticleTitleAssociations among protein heterozygosity, growth rate, and developmental homeostasis Annu. Rev. Ecol. Syst. 15 479–499 Occurrence Handle10.1146/annurev.es.15.110184.002403

    Article  Google Scholar 

  • J.B. Mitton C. Carey T.D. Kocher (1986) ArticleTitleThe relation of enzyme heterozygosity to standard and active oxygen consumption and body size of tiger salamanders, Amystoma tigrinum Physiol. Zool. 59 579–582

    Google Scholar 

  • M. Nei (1987) Molecular Evolutionary Genetics Columbia University Press New York

    Google Scholar 

  • P. Pamilo S. Pálsson (1998) ArticleTitleAssociative overdominance, heterozygosity and fitness Heredity 81 381–389 Occurrence Handle9839436 Occurrence Handle1:CAS:528:DyaK1cXnslKhsbk%3D Occurrence Handle10.1046/j.1365-2540.1998.00395.x

    Article  PubMed  CAS  Google Scholar 

  • M. Pérez la Vega Particlede R.W. Allard (1984) ArticleTitleMating system and genetic polymorphism in populations of Secale cereale and S. vavilovii Can. J. Genet. Cytol. 26 308–317

    Google Scholar 

  • G.H. Pogson S.E. Fevolden (1998) ArticleTitleDNA heterozygosity and growth rate in the Atlantic cod Gadus morhua L Evolution 52 915–920 Occurrence Handle10.2307/2411287

    Article  Google Scholar 

  • T. Shikano N. Taniguchi (2002) ArticleTitleRelationships between genetic variation measured by microsatellite DNA markers and a fitness-related trait in the guppy (Poecilla reticulata) Aquaculture 209 77–90 Occurrence Handle1:CAS:528:DC%2BD38XkslGjurY%3D Occurrence Handle10.1016/S0044-8486(01)00812-2

    Article  CAS  Google Scholar 

  • A. Tsitrone F. Rousset P. David (2001) ArticleTitleHeterosis, marker mutational processes and population inbreeding history Genetics 159 1845–1859 Occurrence Handle11779819 Occurrence Handle1:STN:280:DC%2BD38%2FlsVSjsA%3D%3D

    PubMed  CAS  Google Scholar 

  • M. Turelli L.R. Ginzburg (1983) ArticleTitleShould individual fitness increase with heterozygosity? Genetics 104 191–209 Occurrence Handle6862183 Occurrence Handle1:STN:280:DyaL3s3jsFGhtg%3D%3D

    PubMed  CAS  Google Scholar 

  • H. Dijk ParticleVan (1984) ArticleTitleGenetic variability in Plantago species in relation to their ecology. 2. Quantitative characters and allozyme loci in P. major Theor. Appl. Genet. 68 43–52 Occurrence Handle10.1007/BF00252310

    Article  Google Scholar 

  • E. Zouros (1993) ArticleTitleAssociative overdominance: evaluating the effects of inbreeding and linkage disequilibrium Genetica 89 35–46 Occurrence Handle10.1007/BF02424504

    Article  Google Scholar 

  • E. Zouros D.W. Foltz (1987) ArticleTitleThe use of allelic isozyme variation for the study of heterosis Isozymes Curr. Top. Biol. Med. Res. 13 1–59 Occurrence Handle3583679 Occurrence Handle1:CAS:528:DyaL2sXitV2msbs%3D

    PubMed  CAS  Google Scholar 

  • E. Zouros F.H. Pogson (1994) Heterozygosity, heterosis and adaptation A.R. Beaumont (Eds) Genetics and Evolution of Aquatic Organisms Chapman and Hall London 135–146

    Google Scholar 

  • E. Zouros M. Romero-Dorey A.L. Mallet (1988) ArticleTitleHeterozygosity and growth in marine bivalves: further data and possible explanations Evolution 42 1332–1341 Occurrence Handle10.2307/2409016

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana M. Figueiras.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Figueiras, A.M., González-Jaén, M.T., Candela, M. et al. Genic heterozygosity, chromosomal interchanges and fitness in rye: any relationship?. Genetica 128, 273–286 (2006). https://doi.org/10.1007/s10709-005-6242-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-005-6242-2

Keywords

Navigation