Skip to main content
Log in

Development and characterization of wheat lines with increased levels of arabinoxylan

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Improving the nutritional quality and health benefits of food has been of increasing interest globally over the last decade. Staple cereal foods are the major sources of dietary fiber and a recent study identified the Chinese wheat cultivar Yumai-34 as having unusually high levels of water-extractable arabinoxylan (WE-AX) and total arabinoxylan (TOT-AX) in flour. Crosses were therefore made between this variety and three Central European varieties (Lupus, Mv-Mambo, Ukrainka) and the physical properties (test weight, thousand-kernel weight, flour yield, kernel hardness), composition (protein, gluten, WEAX, total AX) and processing quality (gluten index, Zeleny sedimentation, Farinograph parameters) of the grain were compared for thirty-one breeding lines (F7–F9) and the four parents in a 3-year field experiment (2013–2015). Increases of 0.5% in the WE-AX content and 1% in the content of total AX content of the flour were achieved, with an improvement in dough properties. The thousand-kernel weight, protein content, gluten content, Zeleny sedimentation and water absorption of the flour also increased in many lines, while three of the lines had yields that were competitive with the official control varieties, making them suitable for registration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

A:X:

Arabinose:xylose ratio

AGP:

Arabinogalactan peptide

AX:

Arabinoxylan

DF:

Dietary fiber

DH:

Doubled haploid

GC:

Gas chromatography

GI:

Gluten index

HI:

Hardness index

LU:

Lupus

MA:

Mv-Mambo

RFLP:

Restriction fragment length polymorphism

PCA:

Principal component analysis

SSD:

Single-seed descent

TKW:

Thousand-kernel weight

TOT:

Total

TW:

Test weight

UK:

Ukrainka

YU:

Yumai-34

WA:

Farinograph water absorption

WE:

Water-extractable

WU:

Water unextractable

References

  • American Association of Cereal Chemists AACC Method 55-31 (1999) Single-kernel characterization system for wheat kernel texture. American Association of Cereal Chemists Approved Methods, St Paul

  • Bagdi A, Tóth B, Lőrincz R, Szendi S, Gere A, Kókai Z, Sipos L, Tömösközi S (2016) Effect of aleurone-rich flour on composition, baking, textural, and sensory properties of bread. LWT Food Sci Technol 65:762–769

    Article  CAS  Google Scholar 

  • Biliaderis CG, Izydorczyk MS, Rattan O (1995) Effect of arabinoxylans on bread-making quality of wheat flours. Food Chem 53:165–171

    Article  CAS  Google Scholar 

  • Bucsella B, Molnár D, Harasztos AH, Tömösközi S (2016) Comparison of the rheological and end-product properties of an industrial aleurone-rich wheat flour, whole grain wheat and rye flour. J Cereal Sci 69:40–48

    Article  Google Scholar 

  • Buksa K, Nowotna A, Ziobro R (2016) Application of cross-linked and hydrolyzed arabinoxylans in baking of model rye bread. Food Chem 192:991–996

    Article  CAS  PubMed  Google Scholar 

  • Cadalen T, Boeuf C, Bernard S, Bernard M (1997) An intervarietal molecular marker map in Triticum aestivum L. em. Thell. and comparison with a map from a wide cross. Theor Appl Genet 94:367–374

    Article  CAS  Google Scholar 

  • Charmet G, Quraishi UM, Ravel C, Romeuf I, Balfourier F, Perretant MR, Joseph JL, Rakszegi M, Guillon F, Bedő Z, Saulnier L (2009) Genetics of dietary fibre in bread wheat. Euphytica 170:155–168

    Article  Google Scholar 

  • Courtin CM, Delcour J (1998) Physicochemical and bread-making properties of low molecular weight wheat-derived arabinoxylans. J Agric Food Chem 46:4066–4073

    Article  CAS  Google Scholar 

  • Courtin CM, Delcour JA (2002) Arabinoxylans and endoxylanases in wheat flour breadmaking. J Cereal Sci 35:225–243

    Article  CAS  Google Scholar 

  • Cseh A, Kruppa K, Molnár I, Rakszegi M, Doležel J, Molnár-Láng M (2011) Characterization of a new 4BS.7HL wheat/barley translocation line using GISH, FISH and SSR markers and its effect on the β-glucan content of wheat. Genome 54:795–804

    Article  CAS  PubMed  Google Scholar 

  • Douglas SG (1981) A rapid method for the determination of pentosans in wheat flour. Food Chem 7:139–145

    Article  CAS  Google Scholar 

  • Frederix SA, Van Hoeymissen K, Courtin CM, Delcour JA (2004) Water-extractable and water-unextractable arabinoxylans affect gluten agglomeration behaviour during wheat flour gluten-starch separation. J Agric Food Chem 52:7950–7956

    Article  CAS  PubMed  Google Scholar 

  • Gebruers K, Dornez E, Boros D, Fraś A, Dynkowska W, Bedo Z, Rakszegi M, Delcour JA, Courtin CM (2008) Variation in the content of dietary fiber and components thereof in wheats in the HEALTHGRAIN diversity screen. J Agric Food Chem 56:9740–9749

    Article  CAS  PubMed  Google Scholar 

  • Gebruers K, Courtin CM, Delcour JA (2009) Quantification of arabinoxylans and their degree of branching using gas chromatography. In: Shewry PR, Ward JL (eds) HEALTHGRAIN methods: analysis of bioactive components in small grain cereals. AACC International Inc., St Paul, pp 177–189

    Chapter  Google Scholar 

  • Gebruers K, Dornez E, Bedo Z, Rakszegi M, Fras A, Boros D, Courtin CM, Delcour JA (2010) Environment and genotype effect on the content of dietary fiber and its components in wheat in the HEALTHGRAIN diversity screen. J Agric Food Chem 58:9353–9361

    Article  CAS  PubMed  Google Scholar 

  • Goesaert H, Brijs K, Veraverbeke WS, Courtin CM, Gebruers K, Delcour JA (2005) Wheat flour constituents: how they impact bread quality, and how to impact their functionality. Trends Food Sci Technol 16:12–30

    Article  CAS  Google Scholar 

  • Heiniö RL, Noort MWJ, Katina K, Alam SA, Sozer N, de Kock HL et al (2016) Sensory characteristics of wholegrain and bran-rich cereal foods: a review. Trends Food Sci Technol 47:25–38

    Article  Google Scholar 

  • Hoseney RC (1984) Functional properties of pentosans in baked goods. Food Technol 1:114–119

    Google Scholar 

  • International Association for Cereal Science and Technology ICC 105/2 (1995) Determination of crude protein in cereals and cereal products for food and for feed. International Association for Cereal Science and Technology, Vienna

    Google Scholar 

  • International Association for Cereal Science and Technology ICC 115/1 (1995) Method for using Brabender Farinograph. International Association for Cereal Science and Technology, Vienna

    Google Scholar 

  • International Association for Cereal Science and Technology ICC 116/1 (1997) Determination of the sedimentation value (according to Zeleny) as an approximate measure of baking quality. International Association for Cereal Science and Technology, Vienna

    Google Scholar 

  • International Association for Cereal Science and Technology ICC 137/1 (1995) Mechanical determination of the wet gluten content of wheat flour (glutomatic). International Association for Cereal Science and Technology, Vienna

    Google Scholar 

  • International Association for Cereal Science and Technology ICC 155 (1995) Determination of wet gluten quantity and quality (gluten index ac. to Perten) of whole wheat meal and wheat flour (Triticum aestivum). International Association for Cereal Science and Technology, Vienna

  • Izydorczyk MS, Biliaderis CG (1992) Effect of molecular size on physical properties of wheat arabinoxylan. J Agric Food Chem 40:561–566

    Article  CAS  Google Scholar 

  • Izydorczyk MS, Rattan O (1995) Effect of arabinoxylans on bread-making quality of wheat flours. Food Chem 53:165–171

    Article  Google Scholar 

  • Ktenioudaki A, Gallagher E (2012) Recent advances in the development of high-fibre baked products. Trends Food Sci Technol 28:4–14

    Article  CAS  Google Scholar 

  • Kulp K (1968) Pentosans of wheat endosperm. Cereal Sci Today 13:414–419

    Google Scholar 

  • Kweon M, Slade L, Levine H (2011) Solvent retention capacity (SRC) testing of wheat flour: Principles and value in predicting flour functionality in different wheat-based food processes and in wheat breeding-a review. Cereal Chem 88:537–552

    Article  CAS  Google Scholar 

  • Leroy P, Negre S, Tixier MH, Perretant MR, Sourdille P, Gay G et al (1997) A genetic reference map for the bread wheat genome: Triticum aestivum L. em. Thell. In: McGuire PE, Qualset CO (eds) Progress in genome mapping of wheat and related species. Joint proceedings of 5th and 6th public workshops in the triticeae mapping initiative. Report No. 18, University of California Genetic Resources Conservation Program, Davis, CA, pp 134–140

  • Lewis SJ, Heaton KW (1999) The metabolic consequences of slow colonic transit. Am J Gastroenterol 94:2010–2016

    Article  CAS  PubMed  Google Scholar 

  • Mares DJ, Stone BA (1973) Studies on wheat endosperm. I. Chemical composition and ultrastructure of the cell walls. Austr J Biol Sci 26:793–812

    Article  CAS  Google Scholar 

  • Martinant JP, Cadalen T, Billot A, Chartier S, Leroy P, Bernard M, Saulnier L, Branlard G (1998) Genetic analysis of water-extractable arabinoxylans in bread wheat endosperm. Theor Appl Genet 97:1069–1075

    Article  CAS  Google Scholar 

  • Moore MA, Beom Park C, Tsuda H (1998) Soluble and insoluble fiber influences on cancer development. Crit Rev Oncol Hematol 27:229–242

    Article  CAS  PubMed  Google Scholar 

  • Morales-Ortega A, Carvajal-Millan E, Lopez-Franco Y, Rascon-Chu A, Lizardi- Mendoza J, Torres-Chavez P, Campa-Mada A (2013) Characterization of water extractable arabinoxylans from a spring wheat flour: rheological properties and microstructure. Molecules 18:8417–8428

    Article  CAS  PubMed  Google Scholar 

  • MSZ 6367/4-86 (1986) Edible, fodder and industrial seeds and husked products. Determination of test weight, thousand-kernel weight and classification grade. Budapest, Hungary: Hungarian Standards Institution. www.mszt.hu

  • Noort MWJ, van Haaster D, Hemery Y, Schols HA, Hamer RJ (2010) The effect of particle size of wheat bran fractions on bread quality: evidence for fibre–protein interactions. J Cereal Sci 52:59–64

    Article  CAS  Google Scholar 

  • Ordaz-Ortiz JJ, Saulnier L (2005) Structural variability of arabinoxylans from wheat flour. Comparison of water-extractable and xylanase-extractable arabinoxylans. J Cereal Sci 42:119–125

    Article  CAS  Google Scholar 

  • Pomeranz Y (1988) Wheat. Chemistry and technology. AACC, St Paul

    Google Scholar 

  • Quraishi UM, Murat F, Abrouk M, Pont K, Confolent C, Oury FX et al (2011) Combined meta-genomics analyses unravel candidate genes for the grain dietary fiber content in bread wheat (Triticum aestivum L.). Funct Integr Genom 11:71–83

    Article  CAS  Google Scholar 

  • Rakha A (2013) Fibre-enriched and wholegrain bread. In: Delcour JA, Poutanen K (eds) Fibre-rich and wholegrain foods: improving quality (1st edn). Woodhead Publishing Limited, Cambridge, pp 211–230

  • Rakszegi M, Kisgyörgy NB, Kiss T, Sestili F, Láng L, Lafiandra F, Bedő Z (2015) Development and characterization of high-amylose wheat lines. Starch/Stärke 67:247–254

    Article  CAS  Google Scholar 

  • Salt LJ, Robertson JA, Jenkins JA, Mulholland F, Mills ENC (2005) The identification of foam-forming soluble proteins from wheat (Triticum aestivum) dough. Proteomics 5:1612–1623

    Article  CAS  PubMed  Google Scholar 

  • Saulnier L, Sado PE, Branlard G, Charmet G, Guillon F (2007) Wheat arabinoxylans: exploiting variation in amount and composition to develop enhanced varieties. J Cereal Sci 46:261–281

    Article  CAS  Google Scholar 

  • Schmiele M, Jaekel LZ, Patricio SMC, Steel CJ, Chang YK (2012) Rheological properties of wheat flour and quality characteristics of pan bread as modified by partial additions of wheat bran or whole grain wheat flour. Int J Food Sci Technol 47:2141–2150

    Article  CAS  Google Scholar 

  • Shewry PR, Piironen V, Lampi A-M, Edelmann M, Kariluoto S, Nurmi T et al (2010) The HEALTHGRAIN wheat diversity screen: effects of genotype and environment on the phytochemicals and dietary fiber components. J Agric Food Chem 58:9291–9298

    Article  CAS  PubMed  Google Scholar 

  • Sivam AS, Sun-Waterhouse D, Quek S, Perera CO (2010) Properties of bread dough with added fiber polysaccharides and phenolic antioxidants: a review. J Food Sci 75:163–174

    Article  Google Scholar 

  • Steer T, Thane C, Stephen A, Jebb S (2008) Bread in the diet: consumption and contribution to nutrient intakes of British adults. In: Proceedings of the nutrition society 67: E363. Cambridge University Press, Cambridge

  • Tömösközi S, Békés F, Haraszi R, Gras PW, Varga J, Salgó A (2002) Application of Micro Z-arm mixer in wheat research: effects of protein addition on mixing properties of wheat dough. Period Polytech 46:11–28

    Google Scholar 

  • Tömösközi S, Nádosi M, Balázs G, Cavanagh C, Morgunov A, Salgó A, Békés F (2009) Revival of sedimentation value: method development, quality prediction and molecular background. In: Branlard G (ed) Gluten proteins. Proceedings of 10th international gluten workshop, INRA, Clermont-Ferrand, France, pp 104–108

  • Van der Borght A, Goesaert H, Veraverbeke WS, Delcour JA (2005) Fractionation of wheat and wheat flour into starch and gluten: a review of main processes and the factors involved. J Cereal Sci 41:221–237

    Article  Google Scholar 

  • Wang J, Rosell CM, Benedito C, Barber D (2002) Effect of the addition of different fibres on wheat dough performance and bread quality. Food Chem 79:221–226

    Article  CAS  Google Scholar 

  • Wang MW, Oudgenoeg G, van Vliet T, Hamer RJ (2003) Interaction of water unextractable solids with gluten protein: effect on dough properties and gluten quality. J Cereal Sci 38:95–104

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research and breeding activity was started with funding from the EU FP6 Healthgrain Project (2005–2010) and is now financed by OTKA Projects K 112169 and K 112179 and by the TÉT_12_JP_2014_0004 Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marianna Rakszegi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 41 kb)

Supplementary material 2 (DOCX 33 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tremmel-Bede, K., Láng, L., Török, K. et al. Development and characterization of wheat lines with increased levels of arabinoxylan. Euphytica 213, 291 (2017). https://doi.org/10.1007/s10681-017-2066-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-017-2066-2

Keywords

Navigation