Skip to main content
Log in

A first genetic assessment of the newly introduced Isle Royale gray wolves (Canis lupus)

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

The gray wolf (Canis lupus) population of Isle Royale National Park suffered an extreme population decline where by 2017 only two wolves that were both half-siblings and a father-daughter pair remained with low probability of producing viable young. This precipitous decline was in part due to the negative fitness consequences associated with inbreeding. To restore the Isle Royale ecosystem 19 gray wolves were translocated in 2018 and 2019. The founders were translocated from Grand Portage, MN (n = 4), western Upper Peninsula, MI (n = 4), Jostle Lake, ON (n = 3), and Michipicoten Island, ON (n = 8), and genotyped using 18 microsatellite loci. Allelic richness and heterozygosity of translocated Isle Royale founders was similar to reference populations. Population structure assigned the Isle Royale founders to gray wolves with little evidence of admixture from eastern wolves (Canis lycaon cf). In addition, we confirmed wolves translocated from Michipicoten Island were a single family-group. Through simulation and empirical analysis of the new Isle Royale founders we projected a loss in genetic variation over the next 50 years and an increase in inbreeding. However, varying levels of immigration may allow the retention of some genetic variation. Our findings indicate Isle Royale founders are genetically diverse and representative of the Great Lakes region, but the numerical dominance of a single family group may have negative implications for retaining genetic diversity and success of establishment for specific wolves, reinforcing the importance of continued monitoring of genetic fitness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Microsatellite data needed to replicate the analysis were deposited into Zenodo, https://doi.org/10.5281/zenodo.4677512

Code availability

The Netlogo file containing the agent-based model, R code for reformatting data from the Netlogo simulation output and R code calculating inbreeding coefficients were deposited into Zenodo, https://doi.org/10.5281/zenodo.4677512

References

  • Adams JR, Vucetich LM, Hedrick PW, Peterson RO, Vucetich JA (2011) Genomic sweep and potential genetic rescue during limiting environmental conditions in an isolated wolf population. Proc R Soc 278:3336–3344

    Google Scholar 

  • Bradley EH, Pletscher DH, Bangs EE, Kunkel KE, Smith DW, Mack CM, Meier TJ, Fontaine JA, Niemeyer CC, Jimenez MD (2005) Evaluating wolf translocation as a nonlethal method to reduce livestock conflicts in the northwestern United States. Conserv Biol 19:1498–1508

    Article  Google Scholar 

  • Bouzat JL, Johnson JA, Toepfer JE, Simpson SA, Esker TL, Westemeier RL (2009) Beyond the beneficial effects of translocations as an effective tool for the genetic restoration of isolated populations. Conserv Biol 10:191–201

    Google Scholar 

  • Campbell NR, Harmon SA, Narum SR (2015) Genotyping-in-Thousands by sequencing (GT-seq): a cost effective SNP genotyping method based on custom amplicon sequencing. Mol Ecol Resour 15:855–867

    Article  PubMed  CAS  Google Scholar 

  • Coltman DW, Bowen WD, Wright JM (1998) Birth weight and neonatal survival of harbor seal pups are positively correlated with genetic variation measured by microsatellites. Proc R Soc 265:803–809

    Article  CAS  Google Scholar 

  • COSEWIC (2015) COSEWIC assessment and status report on the Eastern Wolf Canis sp. cf. lycaon in Canada. Committee on the status of endangered wildlife in Canada. Ottawa. xii + 67 pp. https://www.sararegistry.gc.ca/default.asp?lang=En&n=65C48F31-1. Accessed 15 July 2020

  • COSSARO (2016) Ontario species at risk evaluation report for Algonquin wolf (Canis sp.), an evolutionarily significant and distinct hybrid with Canis lycaon, C. latrans, and C. lupus ancestry. Committee on the status of species at risk in Ontario. http://cossaroagency.ca/wp-content/uploads/2017/06/Accessible_COSSARO-evaluation-Algonquin-Wolf.pdf. Accessed 15 July 2020

  • Coster A (2013) pedigree: pedigree functions. R package version 1.4. Available at: https://cran.r-project.org/web/packages/pedigree/index.html. Accessed 10 May 2020

  • Cubaynes S, MacNulty DR, Stahler DR, Quimby KA, Smith DW, Coulson T (2014) Density-dependent intraspecific aggression regulates survival in northern Yellowstone wolves (Canis lupus). J Anim Ecol 83:1344–1356

    Article  PubMed  Google Scholar 

  • Dent EA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361

    Article  Google Scholar 

  • Diamond JM (1975) The island dilemma: lessons of modern biogeographic studies for designs of natural preserves. Biol Conserv 7:129–146

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  PubMed  CAS  Google Scholar 

  • Fain SR, Straughan DJ, Taylor BF (2010) Genetic outcomes of wolf recovery in the western Great Lakes states. Conserv Genet 11:1747–1765

    Article  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure: extensions to linked loci and correlated allele frequencies. Genetics 164:1567–1587

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Frankham R (1997) Do island populations have less genetic variation than mainland populations. Heredity 78:311–327

    Article  PubMed  Google Scholar 

  • Frankham R (1998) Inbreeding and extinction: island populations. Conserv Biol 12:665–675

    Article  Google Scholar 

  • Frankham R, Bradshaw CJA, Brook BW (2014) Genetics in conservation management: revised recommendations for the 50/500 rules, Red List criteria and population viability analyses. Biol Conserv 170:56–63

    Article  Google Scholar 

  • Fritts SH, Paul WJ, Mech LD (1985) Can relocated wolves survive. Wildl Soc Bull 13:459–463

    Google Scholar 

  • Geffen E, Kam M, Hefner R, Hersteinsson P, Angerbjörn A, Dalèn L, Fuglei E, Norèn K, Adams JR, Stahler DR, Wayne RK (2011) Kin encounter rate and inbreeding avoidance in canids. Mol Ecol 20:5348–5358

    Article  PubMed  Google Scholar 

  • Goudet J (2005) HIERFSTAT, a package for R to compute and test hierarchical F-statistics. Mol Ecol Notes 5:184–486

    Article  Google Scholar 

  • Grimm V, Berger U, Bastiansen F, Eliassen S, Ginot V, Giske J, Gross-Custard J, Grand T, Heinz SK, Huse G, Huth A, Jepsen JU, Jørgensen C, Mooij WM, Müller B, Pe’er G, Piou C, Railsback SF, Robbins AM, Robbins MM, Rossmanith E, Rüger N, Strand E, Souissi S, Stillman RA, Vabø R, Visser U, DeAngelis DL (2006) A standard protocol for describing individual-based and agent-based models. Ecol Model 198:115–126

    Article  Google Scholar 

  • Grimm V, Berger U, DeAngelis DL, Polhill JG, Giske J, Railsback SF (2010) The ODD protocol: a review and first update. Ecol Model 221:2760–2768

    Article  Google Scholar 

  • Grimm V, Railsback SF, Vincenot CE, Berger U, Gallagher C, DeAngelis DL, Edmonds B, Ge J, Giske J, Groeneveld J, Johnston ASA, Milles A, Nabe-Nielson J, Polhill JG, Radchuk V, Rohwäder M, Stillman RA, Thiele JC, Ayllón D (2020) The ODD protocol for describing agent-based and other simulation models: a second update to improve clarity, replication, and structural realism. J Artif Soc Soc Stimul. https://doi.org/10.18564/jasss.4259

    Article  Google Scholar 

  • Guyon R, Lorentzen TD, Hitte C, Kim L, Cadieu E, Parker HG, Quignon P, Lowe JK, Renier C, Gelfenbeyn B, Vignaux F, DeFrance HB, Gloux S, Mahairas GG, André C, Galibert F, Ostrander EA (2003) A 1-Mb resolution radiation hybrid map of the canine genome. PNAS 100:5296–5301

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Harrisson KA, Pavlova A, Telonis-Scott M, Sunnucks P (2014) Using genomics to characterize evolutionary potential for conservation of wild populations. Evol Appl 7(9):1008–1025

    Article  PubMed  PubMed Central  Google Scholar 

  • Hedrick PW, Fredrickson RJ (2008) Captive breeding and the reintroduction of Mexican and red wolves. Mol Ecol 17:344–350

    Article  PubMed  CAS  Google Scholar 

  • Hedrick PW, Peterson RO, Vucetich LM, Adams JR, Vucetich JA (2014) Genetic rescue in Isle Royale wolves: genetic analysis and the collapse of the population. Conserv Genet 15:1111–1121

    Article  Google Scholar 

  • Hedrick PW, Kardos M, Peterson RO, Vucetich JA (2016) Genomic variation of inbreeding and ancestry in the remaining two Isle Royale wolves. Am Genet Assoc 108:120–126

    Google Scholar 

  • Hedrick PW, Robinson JA, Peterson RO, Vucetich JA (2019) Genetics and extinction and the example of Isle Royale wolves. Anim Conserv 22:302–309

    Article  Google Scholar 

  • Heppenheimer E, Harrigan RJ, Rutledge LY, Koepfli K, DeCandia AL, Brzeski KE, Benson JF, Wheeldon T, Patterson BR, Kays R, Hohenlohe PA, von Holdt BM (2018) Population genomic analysis of North American Eastern Wolves (Canis Lycaon) supports their conservation priority status. Genes. https://doi.org/10.3390/genes9120606

    Article  PubMed  PubMed Central  Google Scholar 

  • Hooper R, Excoffier L, Forney KA, Thomas M, Gilbert P, Martin MD, Morin PA, Wolf JBW, Foote AD (2020) Runs of homozygosity in killer whale genomes provide a global record of demographic histories. bioRxiv. https://doi.org/10.1101/2020.04.08.031344

    Article  Google Scholar 

  • Jombart T (2008) adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405

    Article  PubMed  CAS  Google Scholar 

  • Jombart T, Collins C (2015) A tutorial for discriminant analysis of principal components (dapc) using adegenet 2.0.0. Available at: http://adegenet.r-forge.r-project.org/files/tutorial-dapc-pdf. Accessed 25 May 2020

  • Kalinowski ST, Wagner AP, Taper ML (2006) ML-Relate: a computer program for maximum likelihood estimation of relatedness and relationship. Mol Ecol 6:576–579

    Article  CAS  Google Scholar 

  • Kamvar ZN, Tabima JF, Grünwald NJ (2014) Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2:e281. https://doi.org/10.7717/peerj.281

    Article  PubMed  PubMed Central  Google Scholar 

  • Kleinman-Ruiz D, Martínes-Cruz B, Soriano L, Lucena-Perez M, Cruz F, Villanueva B, Fernández J, Godoy JA (2017) Novel efficient genome-wide SNP panels for the conservation of the highly endangered Iberian lynx. BMC Genom. https://doi.org/10.1186/s12864-017-3946-5

    Article  Google Scholar 

  • Land D, Lotz M, Shindle D, Taylor SK (1999) Florida panther genetic restoration and management: annual performance report 1998–1999. Florida Fish and Wildlife Conservation Commission, Naples, FL. Accessed 10 May 2020

  • Leonard JA, Wayne RK (2007) Native Great Lakes wolves were not restored. Biol Lett 4:95–98

    Article  PubMed Central  Google Scholar 

  • Licht DS, Moen RA, Brown DP, Romanski MC, Gitzen RA (2015) The Canada Lynx (Lynx canadensis) of Isle Royale: over-harvest, climate change, and the extirpation of an island population. Can Field Nat 129:139–151

    Article  Google Scholar 

  • Madsen T, Shine R, Olsson M, Wittzell H (1999) Restoration of an inbred adder population. Nature 402:34–35

    Article  CAS  Google Scholar 

  • Mellersh CS, Langston AA, Acland GM, Fleming MA, Ray K, Wiegand NA, Francisco LV, Gibbs M, Aguirre GD, Ostrander EA (1997) A linkage map of the canine genome. Genomics 46:326–336

    Article  PubMed  CAS  Google Scholar 

  • National Park Service (2018) Final Environmental Impact Statement to Address the Presence of Wolves. National Park Service, Houghton, MI USA. https://parkplanning.nps.gov/document.cfm?parkID=140&projectID=59316&documentID=88676. Accessed 26 April 2020

  • Neff MW, Broman KW, Mellersh CS, Ray K, Acland GM, Aguirre GD, Ziegle JS, Ostrander EA, Rine J (1999) A second-generation genetic linkage map of the domestic dog, Canis familiaris. Genetics 151:803–820

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nei M (1987) Molecular Evolutionary Genetics. Columbia University Press, New York

    Book  Google Scholar 

  • Niskanen AK, Kennedy LJ, Ruokonen M, Kojola I, Lohi H, Isomursu M, Jansson E, Pyhäjärvi T, Aspi J (2013) Balancing selection and heterozygote advantage in major histocompatibility complex loci of the bottlenecked Finnish wolf population. Mol Ecol 23:875–889

    Article  CAS  Google Scholar 

  • Ostrander EA, Sprague G, Rine J (1993) Identification and characterization of dinucleotide repeat (CA)n markers for genetic mapping in dog. Genomics 16:207–213

    Article  PubMed  CAS  Google Scholar 

  • Ostrander EA, Mapa F, Yee M, Rine J (1995) One hundred and one new simple sequence repeat-based markers for the canine genome. Mamm Genome 6:192–195

    Article  PubMed  CAS  Google Scholar 

  • Paradis E (2010) pegas: an R package for population genetics with an integrated-modular approach. Bioinformatics 26:419–420

    Article  PubMed  CAS  Google Scholar 

  • Peterson RO, Page RE (1988) The rise and fall of Isle Royale wolves. J Mammal 69:89–99

    Article  Google Scholar 

  • Peterson RO, Thomas NJ, Thurber JM, Vucetich JA, Waite TA (1998) Population limitation and the wolves of Isle Royale. J Mammal 79:828–841

    Article  Google Scholar 

  • Pritchard JK, Stephens MS, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Räikkönen J, Vucetich JA, Peterson RO, Nelson MP (2009) Congenital bone deformities and the inbred wolves (Canis lupus) of Isle Royale. Biol Conserv 142:1025–1031

    Article  Google Scholar 

  • Reading RP, Miller B, Shepherdson D (2013) The value of enrichment to reintroduction success. Zoo Biol 32:332–341

    Article  PubMed  Google Scholar 

  • Reed DH, O’Grady JJ, Brook BW, Ballou JD, Frankham R (2003) Estimates of minimum viable population size for vertebrates and factors influencing those estimates. Biol Conserv 113:23–34

    Article  Google Scholar 

  • Robinson JA, Räikkönen J, Vucetich LM, Vucetich JA, Peterson RO, Lohmueller KE, Wayne RK (2019) Genomic signatures of extensive inbreeding in Isle Royale wolves, a population on the threshold of extinction. Sci Adv. https://doi.org/10.1126/sciadv.aau0757

    Article  PubMed  PubMed Central  Google Scholar 

  • Romanski MC, Orning EK, Kellner KF, Beyer DE Jr., Brzeski KE, Hart J, Lonsway DH, McLaren AAD, Moore SA, Patterson BR, Verant ML, Wolf TM, Belant JL (2020) Wolves and the Isle Royale environment: restoring and island ecosystem. National Park Service, Houghton, MI USA. Accessed 5 Feb 2020

  • Rutledge LY, Garroway CJ, Loveless KM, Patterson BR (2010) Genetic differentiation of eastern wolves in Algonquin Park despite bridging gene flow between coyotes and gray wolves. Heredity 105:520–531

    Article  PubMed  CAS  Google Scholar 

  • Sams AJ, Boyko AR (2019) Fine-scale resolution of runs of homozygosity reveal patterns of inbreeding and substantial overlap with recessive disease genotypes in domestic dogs. Genes Genomes Genet 9:117–123

    CAS  Google Scholar 

  • Sidorovich VE, Stolyarov VP, Vorobei NN, Ivanova NV, Jȩdrzejewska B (2007) Litter size, sex ratio, and age structure of gray wolves, Canis lupus, in relation to population fluctuations in northern Belarus. Can J Zool 85:295–300

    Article  Google Scholar 

  • Traill LW, Bradshaw CJA, Brook BW (2007) Minimum viable population size: a meta-analysis of 30 years of published estimates. Biol Conserv 139:159–166

    Article  Google Scholar 

  • vonHoldt BM, Stahler DR, Smith DW, Earl DA, Pollinger JP, Wayne RK (2008) The genealogy and genetic viability of reintroduced Yellowstone gray wolves. Mol Ecol 17:252–274

    Article  PubMed  Google Scholar 

  • Vucetich JA, Peterson RO, Waite TA (1997) Effects of social structure and prey dynamics on extinction risk in gray wolves. Conserv Biol 11:957–965

    Article  Google Scholar 

  • Wang J (2004) Sibship reconstruction from genetic data with typing errors. Genetics 166:1963–1979

    Article  PubMed  PubMed Central  Google Scholar 

  • Wayne RK, Lehman N, Girman D, Gogan PJP, Gilbert DA, Hansen K, Peterson RO, Seal US, Eisenhawer A, Mech LD, Krumenaker RJ (1991) Conservation genetics of the endangered Isle Royale gray wolf. Conserv Genet 5:41–51

    Google Scholar 

  • Wheeldon T, White BN (2009) Genetic analysis of historic western Great Lakes region wolf samples reveals early Canis lupus/lycaon hybridization. Biol Lett 5:101–104

    Article  PubMed  Google Scholar 

  • Wheeldon TJ, Patterson BR, White BN (2010) Sympatric wolf and coyote populations of the western Great Lakes region are reproductively isolated. Mol Ecol 19:4428–4440

    Article  PubMed  Google Scholar 

  • Wickham H (2016) GGPLOT2. Elegant graphics for data analysis. Springer Nature, New York

    Google Scholar 

  • Wilensky U (1999) Netlogo: center for connected learning and computer-based modeling. Northwest University, Evanston

    Google Scholar 

  • Yan S, Bai C, Li Y, Li Y, Hou J, Zhao Z, Han W (2013) Sex identification of dog by PCR based on the differences in the AMELX and AMELY genes. Anim Genet 44:604–607

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Rolf Peterson and Phil Hedrick for their insightful contributions to earlier drafts of the manuscript, Andrew Barnas for sharing of Netlogo data export code, and Tyler Wheeldon for providing information on wolves translocated from Michipicoten Island, ON. We would also like to thank Dr. Marty Kardos and two anonymous reviewers for improving the final publication. Sampling permits and in-kind assistance were provided by the National Park Service, Ontario Ministry of Natural Resources & Forestry (AUC permit no. 19-441), and the State University of New York College of Environmental Science and Forestry. This research was funded by the National Park service, Michigan Technological University, and the Ecosystem Science Center.

Funding

This study was funded by the National Park Service, Michigan Technological University, and the Ecosystem Science Center.

Author information

Authors and Affiliations

Authors

Contributions

SDH, LYR, BRP, MCR, and KEB designed the study; BRP, MCR, JLB, SAM, and DEB collected the samples; LYR and BRP produced the microsatellite dataset for ISRO founders and reference samples; SDH, LYR and KEB analyzed microsatellite data and produced simulations; JAV provided guidance for simulations; All authors made substantial contributions to the writing of this article.

Corresponding authors

Correspondence to Samuel D. Hervey or Kristin E. Brzeski.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Ontario Ministry of Natural Resources & Forestry AUC permit no. 19-441.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 566 kb)

Supplementary file2 (DOCX 408 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hervey, S.D., Rutledge, L.Y., Patterson, B.R. et al. A first genetic assessment of the newly introduced Isle Royale gray wolves (Canis lupus). Conserv Genet 22, 913–926 (2021). https://doi.org/10.1007/s10592-021-01373-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-021-01373-y

Keywords

Navigation