Skip to main content
Log in

Cobalt (II) Phthalocyanine Sulfonate Supported on Reduced Graphene Oxide (RGO) as a Recyclable Photocatalyst for the Oxidation of Aldehydes to Carboxylic Acids

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The development of robust and cheap photocatalyst systems for visible-light induced organic substrate transformations is a significant uprising research topic at the crossroads of green chemistry and modern synthetic methodology. Atom economy, efficiency and selectivity are key parameters for the future practical applicability of the specific processes catalyzed. In this context, we report a simple and sustainable oxygen-dependent route for oxidizing various aromatic and aliphatic aldehydes to the corresponding carboxylic acids at room temperature under visible light and sunlight irradiation mediated by cobalt phthalocyanine tetrasulfonic acid (CoPcS) supported on reduced graphene oxide (RGO). Remarkably, products are obtained with (81–100)% conversion and 100% selectivity.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 2
Scheme 3

Similar content being viewed by others

References

  1. Hajimohammadi M, Schwarzinger C, Knör G (2012) RSC Adv 2:3257

    CAS  Google Scholar 

  2. Que L Jr, Tolman WB (2008) Nature 455:333

    CAS  PubMed  Google Scholar 

  3. Hajimohammadi M, Verjani MK, Ghasemi H, Safari N, Knör G (2018) J Porphyrins Phthalocyanines 22:679

    CAS  Google Scholar 

  4. Davies HG, Green RH, Kelly DR, Roberts SM (1989) Biotransformations in preparative organic chemistry: the use of isolated enzymes and whole-cell Systems in Synthesis. Academic Press, London

    Google Scholar 

  5. Sono M, Roach MP, Coulter ED, Dawson JH (1996) Chem Rev 96:2841

    CAS  PubMed  Google Scholar 

  6. Nelson DR (2006) Methods Mol Biol 320:1

    CAS  PubMed  Google Scholar 

  7. Fischer M, Knoll M, Sirim D, Wagner F, Funke S, Pleiss J (2007) Bioinformatics 23:2015

    CAS  PubMed  Google Scholar 

  8. Knör G (2016) Coord Chem Rev 325:102

    Google Scholar 

  9. Ertl M, Wöß E, Knör G (2015) Photochem Photobiol Sci 14:1826

    CAS  PubMed  Google Scholar 

  10. Boudart M (1995) Chem Rev 95:661

    CAS  Google Scholar 

  11. Martin SH, Shunmugavel S, Esben T (2010) Science 328:602

    Google Scholar 

  12. Chuan-De W, Wenbin L (2006) Angew Chem 119:1093

    Google Scholar 

  13. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva V, Firsov AA (2004) Science 306:666

    CAS  PubMed  Google Scholar 

  14. Machado BF, Serp P (2012) Cat Sci Technol 2:54

    CAS  Google Scholar 

  15. Woltornist SJ, Adamson DH (2016) Ind Eng Chem Res 55:6777

    CAS  Google Scholar 

  16. An D, Yang L, Wang T-J, Liu B (2016) Ind Eng Chem Res 55:4803

    CAS  Google Scholar 

  17. Lavin-Lopez MP, Valverde JL, Sanchez-Silva L, Romero A (2016) Ind Eng Chem Res 55:845

    CAS  Google Scholar 

  18. Huang X, Qi X, Boey F, Zhang H (2012) Chem Soc Rev 41:666

    CAS  PubMed  Google Scholar 

  19. Ambrosi A, Chua CK, Latiff NM, Loo AH, Wong CH, Eng AY, Bonanni A, Pumera M (2016) Chem Soc Rev 45:2458

    PubMed  Google Scholar 

  20. Wang Z, Tang C, Sachs R, Barlas Y, Shi J (2015) Phys Rev Lett 114:016603

    PubMed  Google Scholar 

  21. Raccichini R, Varzi A, Passerini S, Scrosati B (2015) Nat Mater 14:271

    CAS  PubMed  Google Scholar 

  22. Buron JD, Pizzocchero F, Jepsen PU, Petersen DH, Caridad JM, Jessen BS, Booth TJ, Bøggild P (2015) Sci Rep 5:12305

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Ding Y, Zhu X, Xiao S, Hu H, Frandsen LH, Mortensen NA, Yvind K (2015) Nano Lett 15:4393

    CAS  PubMed  Google Scholar 

  24. Kumar P, Shahzad F, Yu S, Hong SM, Kim Y-H, Koo CM (2015) Carbon 94:494

    CAS  Google Scholar 

  25. Jiang L, Liu Y, Liu S, Hu X, Zeng G, Hu X, Liu S, Liu S, Huang B, Li M (2017) Chem Eng J 308:597

    CAS  Google Scholar 

  26. Fang R, Zhao S, Pei S, Qian X, Hou PX, Cheng HM, Liu C, Li F (2016) ACS Nano 10:8676

    CAS  PubMed  Google Scholar 

  27. Primo A, Neatu F, Florea M, Parvulescu V, Garcia H (2014) Nat Commun 5:5291

    CAS  PubMed  Google Scholar 

  28. Chitta R, Souza FD (2008) J Mater Chem 18:1440

    CAS  Google Scholar 

  29. Zhang Y, Wen Y, Liu Y, Li D, Li J (2004) Electrochem Commun 6:1180

    CAS  Google Scholar 

  30. Leznoff CC, Lever ABP (1998) Phthalocyanines—properties and applications, vol. 1, VCH, New York, 1998

    Google Scholar 

  31. Shinohara H, Tsaryova O, Schnurpfeil G, Wöhrle D (2006) J Photochem Photobiol A 184:50

    CAS  Google Scholar 

  32. Ishii K (2012) Coord Chem Rev 256:1556

    Google Scholar 

  33. Nwahara N, Britton J, Nyokong T (2017) J Coord Chem 70:1

    Google Scholar 

  34. Hummers WS, Offeman RE (1958) J Am Chem Soc 80:1339

    CAS  Google Scholar 

  35. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Carbon 45:1558

    CAS  Google Scholar 

  36. Hoffmann MR, Lim BC (1979) Environ Sci Technol 13:1406

    CAS  Google Scholar 

  37. Boyce SD, Hoffmann MR, Hong AP, Moberly LM (1983) Environ Sci Technol 17:602

    CAS  PubMed  Google Scholar 

  38. Boyce SD, Hoffmann MR, Hong AP, Moberly LM (1983) Environ Sci Technol 17:602

    CAS  PubMed  Google Scholar 

  39. Hong AP, Bahnemann DW, Hoffmann MR (1987) J Phys Chem 91: 2109

    CAS  Google Scholar 

  40. Hong AP, Bahnemann DW, Hoffmann MR (1987) J Phys Chem 91: 6245

    CAS  Google Scholar 

  41. Leung PSK, Betterton EA, Hoffmann MR (1989) J Phys Chem 93: 430

    CAS  Google Scholar 

  42. Leung PSK, Hoffmann MR (1989) J Phys Chem 93: 434

    CAS  Google Scholar 

  43. Hajimohammadi M, Ghasemi H (2016) J. Porphyrins Phthalocyanines 20:670

    CAS  Google Scholar 

  44. Laing M (1989) J Chem Educ 66:453

    CAS  Google Scholar 

  45. Chen Y, Xu S, Li L, Zhang M, Shen J, Shen T (2001) Dyes Pigments 51:63

    CAS  Google Scholar 

  46. Bressan M, Morvillo A (1989) Inorg Chem 28:950

    CAS  Google Scholar 

  47. Toffoli DJ, Gomes L, Vieira Junior ND, Coronato Courrol L (2008) AIP Conf Proc 992:1207

    CAS  Google Scholar 

  48. Harbour JR, Issler SL (1982) J Am Chem Soc 104:903

    CAS  Google Scholar 

  49. Wan P, Muralidharaina S, Cauley I, Babbage CA (1987) Can J Chem 65:1775

    CAS  Google Scholar 

  50. McNesby J, Heller C (1954) Chem Rev 54:325

    CAS  Google Scholar 

  51. Sajus L, Roch S (1980) Bamford C, Tipper C (eds) Comprehensive chemical kinetics. Elsevier, New York

    Google Scholar 

  52. Lehtinen C, Nevalainen V, Brunow G (2001) Tetrahedron 57:4741

    CAS  Google Scholar 

  53. Hajimohammadi M, Ahmadi KZ, Nosrati P (2019) Trans Met Chem 44:167

    CAS  Google Scholar 

Download references

Acknowledgements

Financial support by Johannes Kepler University and Kharazmi University is gratefully acknowledged. The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Günther Knör.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hajimohammadi, M., Azizi, N., Tollabimazraeno, S. et al. Cobalt (II) Phthalocyanine Sulfonate Supported on Reduced Graphene Oxide (RGO) as a Recyclable Photocatalyst for the Oxidation of Aldehydes to Carboxylic Acids. Catal Lett 151, 36–44 (2021). https://doi.org/10.1007/s10562-020-03287-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03287-9

Keywords

Navigation