Skip to main content

Advertisement

Log in

Next generation predictive biomarkers for immune checkpoint inhibition

  • Clinical
  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

With the advent of targeted therapies, there has been a revolution in the treatment of cancer across multiple histologies. Immune checkpoint blockade has made it possible to take advantage of receptor-ligand interactions between immune and tumor cells in a wide spectrum of malignancies. Toxicity in healthy tissue, however, can limit our use of these agents. Immune checkpoint blockade has been approved in advanced melanoma, renal cell cancer, non-small cell lung cancer, relapsed refractory Hodgkin’s lymphoma, and urothelial cancer. Though FDA-approved indications for use of some of these novel agents depend on current protein-based programmed death 1 (PD-1) and programmed death ligand 1 (PD-L1) assays, detection methods come with several caveats. Additional predictive tools must be interrogated to discern responders from non-responders. Some of these include measurement of microsatellite instability, PD-L1 amplification, cluster of differentiation 8 (CD8) infiltrate density, and tumor mutational burden. This review serves to synthesize biomarker detection at the DNA, RNA, and protein level to more accurately forecast benefit from these novel agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Johnson, B.E., Kris, M.G., Berry, L.D., Kwiatkowski, D.J., Lafrate, A.J., Varella-Garcia, M., Wistuba, I.I. (2013). A multicenter effort to identify driver mutations and employ targeted therapy in patients with lung adenocarcinomas: The Lung Cancer Mutation Consortium (LCMC). Journal of Clinical Oncology 2013 ASCO Annual Meeting Abstracts, 13(15).

  2. Patel, S. P., Schwaederle, M., Daniels, G. A., Fanta, P. T., Schwab, R. B., Shimabukuro, K. A., et al. (2015). Molecular inimitability amongst tumors: implications for precision cancer medicine in the age of personalized oncology. Oncotarget, 6(32), 32602–32609. doi:10.18632/oncotarget.5289.

    PubMed  PubMed Central  Google Scholar 

  3. Atkins, M. B., Lotze, M. T., Dutcher, J. P., Fisher, R. I., Weiss, G., Margolin, K., et al. (1999). High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 17(7), 2105–2116.

    Article  CAS  Google Scholar 

  4. La-Beck, N. M., Jean, G. W., Huynh, C., Alzghari, S. K., & Lowe, D. B. (2015). Immune checkpoint inhibitors: new insights and current place in cancer therapy. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy, 35(10), 963–976. doi:10.1002/phar.1643.

    Article  CAS  Google Scholar 

  5. Patel, S. P., & Kurzrock, R. (2015). PD-L1 expression as a predictive biomarker in cancer immunotherapy. Molecular Cancer Therapeutics, 14(4), 847–856. doi:10.1158/1535-7163.MCT-14-0983.

    Article  CAS  PubMed  Google Scholar 

  6. Patel, S. P., Osada, T., Osada, K., Hurwitz, H., Lyerly, H. K., & Morse, M. A. (2013). Modulation of immune system inhibitory checkpoints in colorectal cancer. Current Colorectal Cancer Reports, 9(4), 391–397. doi:10.1007/s11888-013-0184-3.

    Article  Google Scholar 

  7. Alexandrov, L. B., Nik-Zainal, S., Wedge, D. C., Aparicio, S. A. J. R., Behjati, S., Biankin, A. V., et al. (2013). Signatures of mutational processes in human cancer. Nature, 500(7463), 415–421. doi:10.1038/nature12477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Le, D. T., Uram, J. N., Wang, H., Bartlett, B. R., Kemberling, H., Eyring, A. D., et al. (2015). PD-1 blockade in tumors with mismatch-repair deficiency. New England Journal of Medicine, 372(26), 2509–2520. doi:10.1056/NEJMoa1500596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pardoll, D. M. (2012). The blockade of immune checkpoints in cancer immunotherapy. Nature Reviews Cancer, 12(4), 252–264. doi:10.1038/nrc3239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dunn, G. P., Bruce, A. T., Ikeda, H., Old, L. J., & Schreiber, R. D. (2002). Cancer immunoediting: from immunosurveillance to tumor escape. Nature Immunology, 3(11), 991–998. doi:10.1038/ni1102-991.

    Article  CAS  PubMed  Google Scholar 

  11. Larsen, S. K. (2016). Cellular immune responses towards regulatory cells. Danish Medical Journal, 63(1), B5188.

    PubMed  Google Scholar 

  12. Topalian, S. L., Hodi, F. S., Brahmer, J. R., Gettinger, S. N., Smith, D. C., McDermott, D. F., et al. (2012). Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. The New England Journal of Medicine, 366(26), 2443–2454. doi:10.1056/NEJMoa1200690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Brahmer, J., Reckamp, K. L., Baas, P., Crinò, L., Eberhardt, W. E. E., Poddubskaya, E., et al. (2015). Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. New England Journal of Medicine, 373(2), 123–135. doi:10.1056/NEJMoa1504627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Borghaei, H., Paz-Ares, L., Horn, L., Spigel, D. R., Steins, M., Ready, N. E., et al. (2015). Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. New England Journal of Medicine, 373(17), 1627–1639. doi:10.1056/NEJMoa1507643.

    Article  CAS  PubMed  Google Scholar 

  15. Herbst, R. S., Baas, P., Kim, D.-W., Felip, E., Pérez-Gracia, J. L., Han, J.-Y., et al. (2016). Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet (London, England), 387(10027), 1540–1550. doi:10.1016/S0140-6736(15)01281-7.

    Article  CAS  Google Scholar 

  16. Rosenberg, J. E., Hoffman-Censits, J., Powles, T., van der Heijden, M. S., Balar, A. V., Necchi, A., et al. (2016). Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet (London, England), 387(10031), 1909–1920. doi:10.1016/S0140-6736(16)00561-4.

    Article  CAS  Google Scholar 

  17. Fehrenbacher, L., Spira, A., Ballinger, M., Kowanetz, M., Vansteenkiste, J., Mazieres, J., et al. (2016). Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): a multicentre, open-label, phase 2 randomised controlled trial. The Lancet, 387(10030), 1837–1846. doi:10.1016/S0140-6736(16)00587-0.

    Article  CAS  Google Scholar 

  18. Massard, C., Gordon, M.S., Sharma, S., Rafil, S., Wainberg, Z.A., Luke, J.J., Curiel, T.J. (2016). Safety and efficacy of durvalumab (MEDI4736), a PD-L1 antibody, in urothelial bladder cancer abstact #4502. Presented at the ASCO 2016, Chicago, Il.

  19. Popat, S., Hubner, R., & Houlston, R. S. (2005). Systematic review of microsatellite instability and colorectal cancer prognosis. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology, 23(3), 609–618. doi:10.1200/JCO.2005.01.086.

    Article  CAS  Google Scholar 

  20. Salipante, S. J., Scroggins, S. M., Hampel, H. L., Turner, E. H., & Pritchard, C. C. (2014). Microsatellite instability detection by next generation sequencing. Clinical Chemistry, 60(9), 1192–1199. doi:10.1373/clinchem.2014.223677.

    Article  CAS  PubMed  Google Scholar 

  21. Lyford-Pike, S., Peng, S., Young, G. D., Taube, J. M., Westra, W. H., Akpeng, B., et al. (2013). Evidence for a role of the PD-1:PD-L1 pathway in immune resistance of HPV-associated head and neck squamous cell carcinoma. Cancer Research, 73(6), 1733–1741. doi:10.1158/0008-5472.CAN-12-2384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schumacher, T. N., & Schreiber, R. D. (2015). Neoantigens in cancer immunotherapy. Science (New York, N.Y.), 348(6230), 69–74. doi:10.1126/science.aaa4971.

    Article  CAS  Google Scholar 

  23. Lal, N., Beggs, A. D., Willcox, B. E., & Middleton, G. W. (2015). An immunogenomic stratification of colorectal cancer: implications for development of targeted immunotherapy. Oncoimmunology, 4(3), e976052. doi:10.4161/2162402X.2014.976052.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Palles, C., Cazier, J.-B., Howarth, K. M., Domingo, E., Jones, A. M., Broderick, P., et al. (2012). Germline mutations affecting the proofreading domains of POLE and POLD1 predispose to colorectal adenomas and carcinomas. Nature Genetics, 45(2), 136–144. doi:10.1038/ng.2503.

    Article  PubMed  PubMed Central  Google Scholar 

  25. van Gool, I. C., Eggink, F. A., Freeman-Mills, L., Stelloo, E., Marchi, E., de Bruyn, M., et al. (2015). POLE proofreading mutations elicit an antitumor immune response in endometrial cancer. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 21(14), 3347–3355. doi:10.1158/1078-0432.CCR-15-0057.

    Article  Google Scholar 

  26. Bosse, Y., Postma, D. S., Sin, D. D., Lamontagne, M., Couture, C., Gaudreault, N., et al. (2012). Molecular signature of smoking in human lung tissues. Cancer Research, 72(15), 3753–3763. doi:10.1158/0008-5472.CAN-12-1160.

    Article  CAS  PubMed  Google Scholar 

  27. Rizvi, N. A., Hellmann, M. D., Snyder, A., Kvistborg, P., Makarov, V., Havel, J. J., et al. (2015). Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science (New York, N.Y.), 348(6230), 124–128. doi:10.1126/science.aaa1348.

    Article  CAS  PubMed Central  Google Scholar 

  28. McGranahan, N., Furness, A. J. S., Rosenthal, R., Ramskov, S., Lyngaa, R., Saini, S. K., et al. (2016). Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science (New York, N.Y.), 351(6280), 1463–1469. doi:10.1126/science.aaf1490.

    Article  CAS  PubMed Central  Google Scholar 

  29. Inoue, Y., Yoshimura, K., Mori, K., Kurabe, N., Kahyo, T., Mori, H., et al. (2016). Clinical significance of PD-L1 and PD-L2 copy number gains in non-small-cell lung cancer. Oncotarget. doi:10.18632/oncotarget.8528.

    Google Scholar 

  30. Ruggiero, E., Nicolay, J. P., Fronza, R., Arens, A., Paruzynski, A., Nowrouzi, A., et al. (2015). High-resolution analysis of the human T-cell receptor repertoire. Nature Communications, 6, 8081. doi:10.1038/ncomms9081.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Tumeh, P. C., Harview, C. L., Yearley, J. H., Shintaku, I. P., Taylor, E. J. M., Robert, L., et al. (2014). PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature, 515(7528), 568–571. doi:10.1038/nature13954.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Groenen, P. J. T. A., Langerak, A. W., van Dongen, J. J. M., & van Krieken, J. H. J. M. (2008). Pitfalls in TCR gene clonality testing: teaching cases. Journal of Hematopathology, 1(2), 97–109. doi:10.1007/s12308-008-0013-9.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Wang, W., Edington, H. D., Rao, U. N. M., Jukic, D. M., Land, S. R., Ferrone, S., & Kirkwood, J. M. (2007). Modulation of signal transducers and activators of transcription 1 and 3 signaling in melanoma by high-dose IFNalpha2b. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 13(5), 1523–1531. doi:10.1158/1078-0432.CCR-06-1387.

    Article  CAS  Google Scholar 

  34. Brase, J. C., Wuttig, D., Kuner, R., & Sültmann, H. (2010). Serum microRNAs as non-invasive biomarkers for cancer. Molecular Cancer, 9(1), 306. doi:10.1186/1476-4598-9-306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang, Z., Han, J., Cui, Y., Fan, K., & Zhou, X. (2013). Circulating microRNA-21 as noninvasive predictive biomarker for response in cancer immunotherapy. Medical Hypotheses, 81(1), 41–43. doi:10.1016/j.mehy.2013.03.001.

    Article  CAS  PubMed  Google Scholar 

  36. Ayers, M., Lunceford, J., Nebozhyn, M., Murphy, E., Loboda, A., Albright, A., et al. (2015). Relationship between immune gene signatures and clinical response to PD-1 blockade with pembrolizumab (MK-3475) in patients with advanced solid tumors. Journal for ImmunoTherapy of Cancer, 3(Suppl 2), P80. doi:10.1186/2051-1426-3-S2-P80.

    Article  PubMed Central  Google Scholar 

  37. Iglesia, M. D., Parker, J. S., Hoadley, K. A., Serody, J. S., Perou, C. M., & Vincent, B. G. (2016). Genomic analysis of immune cell infiltrates across 11 tumor types. Journal of the National Cancer Institute, 108(11), djw144. doi:10.1093/jnci/djw144.

    Article  PubMed  Google Scholar 

  38. Partlová, S., Bouček, J., Kloudová, K., Lukešová, E., Zábrodský, M., Grega, M., et al. (2015). Distinct patterns of intratumoral immune cell infiltrates in patients with HPV-associated compared to non-virally induced head and neck squamous cell carcinoma. Oncoimmunology, 4(1), e965570. doi:10.4161/21624011.2014.965570.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wallden, B., Pekker, I., Popa, S., Dowidar, N., Sullivan, A., Hood, T., Danaher, P. (2016). Development and analytical performance of a molecular diagnostic for anti-PD1 response on the nCounterDx analysis system abstract #3034. Presented at the ASCO 2016, Chicago, Il.

  40. Piha-Paul, S., Bennouna, J., Albright, A., Nebozhyn, M., McClanahan, T., Ayers, M., … Ott, P. (2016). T-cell inflamed phenotype gene expression signatures to predict clinical benefit from pembrolizumab across multiple tumor types abstract #1536. Presented at the ASCO 2016, Chicago, Il.

  41. Shen-Orr, S. S., & Gaujoux, R. (2013). Computational deconvolution: extracting cell type-specific information from heterogeneous samples. Current Opinion in Immunology, 25(5), 571–578. doi:10.1016/j.coi.2013.09.015.

    Article  CAS  PubMed  Google Scholar 

  42. Newman, A. M., Liu, C. L., Green, M. R., Gentles, A. J., Feng, W., Xu, Y., et al. (2015). Robust enumeration of cell subsets from tissue expression profiles. Nature Methods, 12(5), 453–457. doi:10.1038/nmeth.3337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Vinayak, S., Newman, A., Adams, S., Afghahi, A., Jensen, K. C., Badve, S. S., et al. (2015). Abstract P5-04-03: deconvoluting immune cell populations using “in silico flow cytometry” with CIBERSORT: association with neoadjuvant therapy response and genomic instability in TNBC. Cancer Research, 75(9 Supplement), P5–04–03–P5–04–03. doi:10.1158/1538-7445.SABCS14-P5-04-03.

    Article  Google Scholar 

  44. FDA Approves Personalized Lung Cancer Immunotherapy with New Kind of CDx. (2015). Retrieved from https://www.genomeweb.com/molecular-diagnostics/fda-approves-personalized-lung-cancer-immunotherapy-new-kind-cdx.

  45. Borczuk, A. C., & Allen, T. C. (2016). PD-L1 and lung cancer: the era of precision-ish medicine? Archives of Pathology & Laboratory Medicine, 140(4), 351–354. doi:10.5858/arpa.2015-0509-SA.

    Article  Google Scholar 

  46. Schmidt, L. H., Kümmel, A., Görlich, D., Mohr, M., Bröckling, S., Mikesch, J. H., et al. (2015). PD-1 and PD-L1 expression in NSCLC indicate a favorable prognosis in defined subgroups. PloS One, 10(8), e0136023. doi:10.1371/journal.pone.0136023.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Bellmunt, J., Mullane, S. A., Werner, L., Fay, A. P., Callea, M., Leow, J. J., et al. (2015). Association of PD-L1 expression on tumor-infiltrating mononuclear cells and overall survival in patients with urothelial carcinoma. Annals of Oncology: Official Journal of the European Society for Medical Oncology/ESMO, 26(4), 812–817. doi:10.1093/annonc/mdv009.

    Article  CAS  Google Scholar 

  48. Wu, C., Zhu, Y., Jiang, J., Zhao, J., Zhang, X.-G., & Xu, N. (2006). Immunohistochemical localization of programmed death-1 ligand-1 (PD-L1) in gastric carcinoma and its clinical significance. Acta Histochemica, 108(1), 19–24. doi:10.1016/j.acthis.2006.01.003.

    Article  PubMed  Google Scholar 

  49. Rizvi, N.A., Chow, L., Borghaei, H., Shen, Y., Harbison, C., Alaparthy, S., Chen, A.C. (2014). Safety and response with nivolumab (anti-PD-1; BMS-936558, ONO-4538) plus erlotinib in patients (pts) with epidermal growth factor receptor mutant (EGFR MT) advanced NSCLC abstract #8022. Presented at the ASCO 2014, Chicago, Il.

  50. Ghebeh, H., Mohammed, S., Al-Omair, A., Qattant, A., Lehe, C., Al-Qudaihi, G., et al. (2006). The B7-H1 (PD-L1) T lymphocyte-inhibitory molecule is expressed in breast cancer patients with infiltrating ductal carcinoma: correlation with important high-risk prognostic factors. Neoplasia, 8(3), 190–198. doi:10.1593/neo.05733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ritprajak, P., & Azuma, M. (2015). Intrinsic and extrinsic control of expression of the immunoregulatory molecule PD-L1 in epithelial cells and squamous cell carcinoma. Oral Oncology, 51(3), 221–228. doi:10.1016/j.oraloncology.2014.11.014.

    Article  CAS  PubMed  Google Scholar 

  52. Schmid, P., Hegde, P., Zou, W., Kowanetz, M., Mariathasan, S., Molinero, L., Gadgeel, S. (2016). Association of PD-L2 expression in human tumors with atezolizumab activity abstract #11506. Presented at the ASCO 2016, Chicago, Il.

  53. Woller, N., Gürlevik, E., Fleischmann-Mundt, B., Schumacher, A., Knocke, S., Kloos, A. M., et al. (2015). Viral infection of tumors overcomes resistance to PD-1-immunotherapy by broadening neoantigenome-directed T-cell responses. Molecular Therapy: The Journal of the American Society of Gene Therapy, 23(10), 1630–1640. doi:10.1038/mt.2015.115.

    Article  CAS  Google Scholar 

  54. Bristol-Meyers Squibb. (n.d.). An open label, randomized phase 3 clinical trial of nivolumab vs therapy of investigator’s choice in recurrent or metastatic platinum-refractory squamous cell carcinoma of the head and neck (SCCHN). (NCT02105636).

  55. Keane, C., Vari, F., Hertzberg, M., Cao, K.-A. L., Green, M. R., Han, E., et al. (2015). Ratios of T-cell immune effectors and checkpoint molecules as prognostic biomarkers in diffuse large B-cell lymphoma: a population-based study. The Lancet Haematology, 2(10), e445–e455. doi:10.1016/S2352-3026(15)00150-7.

    Article  PubMed  Google Scholar 

  56. Jefferson, E. (2011). FDA Approves new treatment for a type of late-stage skin cancer. US Food and Drug Administration. Retrieved from http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm1193237.htm.

  57. Chambers, C. A., Kuhns, M. S., Egen, J. G., & Allison, J. P. (2001). CTLA-4-mediated inhibition in regulation of T cell responses: mechanisms and manipulation in tumor immunotherapy. Annual Review of Immunology, 19, 565–594. doi:10.1146/annurev.immunol.19.1.565.

    Article  CAS  PubMed  Google Scholar 

  58. Bracarda, S., Altavilla, A., Hamzaj, A., Sisani, M., Marrocolo, F., Del Buono, S., & Danielli, R. (2015). Immunologic checkpoints blockade in renal cell, prostate, and urothelial malignancies. Seminars in Oncology, 42(3), 495–505. doi:10.1053/j.seminoncol.2015.02.004.

    Article  PubMed  Google Scholar 

  59. Ribas, A., Kefford, R., Marshall, M. A., Punt, C. J. A., Haanen, J. B., Marmol, M., et al. (2013). Phase III randomized clinical trial comparing tremelimumab with standard-of-care chemotherapy in patients with advanced melanoma. Journal of Clinical Oncology, 31(5), 616–622. doi:10.1200/JCO.2012.44.6112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Blank, C., Gajewski, T. F., & Mackensen, A. (2005). Interaction of PD-L1 on tumor cells with PD-1 on tumor-specific T cells as a mechanism of immune evasion: implications for tumor immunotherapy. Cancer Immunology, Immunotherapy: CII, 54(4), 307–314. doi:10.1007/s00262-004-0593-x.

    Article  CAS  PubMed  Google Scholar 

  61. US Food and Drug Administration. (2015). FDA approves Keytruda for advanced non-small cell lung cancer.

  62. Garon, E. B., Rizvi, N. A., Hui, R., Leighl, N., Balmanoukian, A. S., Eder, J. P., et al. (2015). Pembrolizumab for the treatment of non-small-cell lung cancer. New England Journal of Medicine, 372(21), 2018–2028. doi:10.1056/NEJMoa1501824.

    Article  PubMed  Google Scholar 

  63. US Food and Drug Administration. (2016). Pembrolizumab (KEYTRUDA) checkpoint inhibitor. Retrieved from http://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm526430.htm.

  64. Reck, M., Rodríguez-Abreu, D., Robinson, A. G., Hui, R., Csőszi, T., Fülöp, A., et al. (2016). Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. New England Journal of Medicine. doi:10.1056/NEJMoa1606774.

    PubMed  Google Scholar 

  65. US Food and Drug Administration. (2016). Atezolizumab (TECENTRIQ). Retrieved from http://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm525780.htm.

  66. Hoffman-La Roche. (2016). A randomized phase 3 study of atezolizumab (an engineered anti-PDL1 antibody) compared to docetaxel in patients with locally advanced or metastatic non-small cell lung cancer who have failed platinum therapy—“OAK.” Retrieved from https://www.clinicaltrials.gov/ct2/show/NCT02008227?term=OAK&rank=2.

  67. Boyerinas, B., Jochems, C., Fantini, M., Heery, C. R., Gulley, J. L., Tsang, K. Y., & Schlom, J. (2015). Antibody-dependent cellular cytotoxicity activity of a novel anti-PD-L1 antibody avelumab (MSB0010718C) on human tumor cells. Cancer Immunology Research, 3(10), 1148–1157. doi:10.1158/2326-6066.CIR-15-0059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Downey, S. G., Klapper, J. A., Smith, F. O., Yang, J. C., Sherry, R. M., Royal, R. E., et al. (2007). Prognostic factors related to clinical response in patients with metastatic melanoma treated by CTL-associated antigen-4 blockade. Clinical Cancer Research, 13(22), 6681–6688. doi:10.1158/1078-0432.CCR-07-0187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Patel, S. P. (2015). Immune checkpoint blockade for lung cancer: state of the art. Translational Cancer Research, 4(4), 415–422.

    CAS  Google Scholar 

  70. Wheler, J., Lee, J. J., & Kurzrock, R. (2014). Unique molecular landscapes in cancer: implications for individualized, curated drug combinations. Cancer Research, 74(24), 7181–7184. doi:10.1158/0008-5472.CAN-14-2329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wheler, J. J., Parker, B. A., Lee, J. J., Atkins, J. T., Janku, F., Tsimberidou, A. M., et al. (2014). Unique molecular signatures as a hallmark of patients with metastatic breast cancer: implications for current treatment paradigms. Oncotarget, 5(9), 2349–2354. doi:10.18632/oncotarget.1946.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Kurzrock, R., & Giles, F. J. (2015). Precision oncology for patients with advanced cancer: the challenges of malignant snowflakes. Cell Cycle (Georgetown, Tex.), 14(14), 2219–2221. doi:10.1080/15384101.2015.1041695.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Yulian Khagi, MD, Razelle Kurzrock, MD, and Sandip Patel, MD, completed the compilation of references, writing, editing, and proofreading of this article. There were no additional parties involved in the completion of this work. This research was funded in part by National Cancer Institute grant P30 CA016672.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yulian Khagi.

Ethics declarations

Conflict of interest

Dr. Khagi has no conflicts of interest. Dr. Patel receives research funding from MedImmune, Genentech, Pfizer, Amgen, Xcovery, Lilly, and Bristol-Myers Squibb. Dr. Kurzrock receives research funding from Genentech, Merck Serono, Pfizer, Sequenom, Foundation Medicine, and Guardant.

Financial disclosure

Dr. Khagi has no financial disclosures to report. Dr. Patel receives speaking fees from Boehringer Ingelheim and Merck. Dr. Kurzrock receives consultant and advisory board fees from Actuate Therapeutics and Xbiotech. She has an ownership interest in Novena Inc. and Curematch Inc. Dr. Kurzrock is funded in part by the Joan and Irwin Jacobs philanthropic fund.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khagi, Y., Kurzrock, R. & Patel, S.P. Next generation predictive biomarkers for immune checkpoint inhibition. Cancer Metastasis Rev 36, 179–190 (2017). https://doi.org/10.1007/s10555-016-9652-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-016-9652-y

Keywords

Navigation