Skip to main content

Advertisement

Log in

LLY17, a novel small molecule STAT3 inhibitor induces apoptosis and suppresses cell migration and tumor growth in triple-negative breast cancer

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

A Letter to the Editor to this article was published on 14 August 2020

Abstract

Purpose

Persistent STAT3 signaling is frequently detected in many cancer types including triple-negative breast cancer, and thus could potentially serve as a viable therapeutic target. We have designed a novel non-peptide compound LLY17 targeting STAT3 using Advanced Multiple Ligand Simultaneous Docking (AMLSD) methods. However, the efficacy of LLY17 has not been evaluated extensively in human and murine triple-negative breast cancer cells. In this study, we tested LLY17 in multiple human and murine triple-negative breast cancer cell lines.

Methods

Human triple-negative breast cancer MDA-MB-468, MDA-MB-231, SUM159, and BT-549 cells, and murine triple-negative breast cancer 4T1 cells were used to study the inhibition effects of LLY17. The inhibition of STAT3 activation of LLY17 was investigated using western blot analysis. Cell viability, apoptosis and migration assays were carried out by MTT assay, Caspase-3/7 assay and wound healing assay, respectively. A mammary fat pad syngeneic mouse model was used to evaluate the antitumor effect of LLY17 in vivo.

Results

LLY17 inhibited IL-6-mediated induction of STAT3 phosphorylation but had no effect on IFN-γ-induced STAT1 phosphorylation or EGF-induced ERK phosphorylation. LLY17 inhibited STAT3 phosphorylation and induced apoptosis in human and murine triple-negative breast cancer cells but exhibited minimal toxicity toward Luminal A subtype breast cancer MCF-7 cells. RNAi attenuation experiments supported the requirement of STAT3 for LLY17-mediated inhibition of cell viability in triple-negative breast cancer cells. In addition, LLY17 inhibited cell migration of human and murine triple-negative breast cancer cells. Furthermore, LLY17 suppressed tumor growth and STAT3 phosphorylation of triple-negative breast cancer cells in a mammary fat pad syngeneic mouse model in vivo.

Conclusions

Together, our findings suggest that targeting persistent STAT3 signaling by novel small molecule LLY17 may be a potential approach for the therapy of triple-negative breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Garrido-Castro AC, Lin NU, Polyak K (2019) Insights into molecular classifications of triple-negative breast cancer: improving patient selection for treatment. Cancer Discov 9:176–198. https://doi.org/10.1158/2159-8290.cd-18-1177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Denkert C, Liedtke C, Tutt A, von Minckwitz G (2017) Molecular alterations in triple-negative breast cancer—the road to new treatment strategies. The Lancet 389:2430–2442. https://doi.org/10.1016/s0140-6736(16)32454-0

    Article  CAS  Google Scholar 

  3. McCann KE, Hurvitz SA (2018) Advances in the use of PARP inhibitor therapy for breast cancer. Drugs Context 7:212540. https://doi.org/10.7573/dic.212540

    Article  PubMed  PubMed Central  Google Scholar 

  4. Cyprian FS, Akhtar S, Gatalica Z, Vranic S (2019) Targeted immunotherapy with a checkpoint inhibitor in combination with chemotherapy: a new clinical paradigm in the treatment of triple-negative breast cancer. Bosn J Basic Med Sci 19:227–233. https://doi.org/10.17305/bjbms.2019.4204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Akira S, Nishio Y, Inoue M, Wang XJ, Wei S, Matsusaka T, Yoshida K, Sudo T, Naruto M, Kishimoto T (1994) Molecular cloning of APRF, a novel IFN-stimulated gene factor 3 p91-related transcription factor involved in the gp130-mediated signaling pathway. Cell 77:63–71

    Article  CAS  PubMed  Google Scholar 

  6. Kamran MZ, Patil P, Gude RP (2013) Role of STAT3 in cancer metastasis and translational advances. Biomed Res Int 2013:421821. https://doi.org/10.1155/2013/421821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wake MS, Watson CJ (2015) STAT3 the oncogene—still eluding therapy? FEBS J 282:2600–2611. https://doi.org/10.1111/febs.13285

    Article  CAS  PubMed  Google Scholar 

  8. Bromberg JF, Wrzeszczynska MH, Devgan G, Zhao Y, Pestell RG, Albanese C, Darnell JE Jr (1999) Stat3 as an oncogene. Cell 98:295–303

    Article  CAS  PubMed  Google Scholar 

  9. Banerjee K, Resat H (2016) Constitutive activation of STAT3 in breast cancer cells: a review. Int J Cancer 138:2570–2578. https://doi.org/10.1002/ijc.29923

    Article  CAS  PubMed  Google Scholar 

  10. Marotta LL, Almendro V, Marusyk A, Shipitsin M, Schemme J, Walker SR, Bloushtain-Qimron N, Kim JJ, Choudhury SA, Maruyama R, Wu Z, Gonen M, Mulvey LA, Bessarabova MO, Huh SJ, Silver SJ, Kim SY, Park SY, Lee HE, Anderson KS, Richardson AL, Nikolskaya T, Nikolsky Y, Liu XS, Root DE, Hahn WC, Frank DA, Polyak K (2011) The JAK2/STAT3 signaling pathway is required for growth of CD44(+)CD24(-) stem cell-like breast cancer cells in human tumors. J Clin Invest 121:2723–2735. https://doi.org/10.1172/jci44745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhong Z, Wen Z, Darnell JE Jr (1994) Stat3: a STAT family member activated by tyrosine phosphorylation in response to epidermal growth factor and interleukin-6. Science 264:95–98. https://doi.org/10.1126/science.8140422

    Article  CAS  PubMed  Google Scholar 

  12. Berishaj M, Gao SP, Ahmed S, Leslie K, Al-Ahmadie H, Gerald WL, Bornmann W, Bromberg JF (2007) Stat3 is tyrosine-phosphorylated through the interleukin-6/glycoprotein 130/Janus kinase pathway in breast cancer. Breast Cancer Res 9:R32. https://doi.org/10.1186/bcr1680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lieblein JC, Ball S, Hutzen B, Sasser AK, Lin HJ, Huang TH, Hall BM, Lin J (2008) STAT3 can be activated through paracrine signaling in breast epithelial cells. BMC Cancer 8:302. https://doi.org/10.1186/1471-2407-8-302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Valle Oseguera CA, Spencer JV (2014) cmvIL-10 stimulates the invasive potential of MDA-MB-231 breast cancer cells. PLoS ONE 9:e88708. https://doi.org/10.1371/journal.pone.0088708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Park JS, Choi SY, Lee JH, Lee M, Nam ES, Jeong AL, Lee S, Han S, Lee MS, Lim JS, Yoon DY, Kwon Y, Yang Y (2013) Interleukin-32beta stimulates migration of MDA-MB-231 and MCF-7cells via the VEGF-STAT3 signaling pathway. Cell Oncol (Dordr) 36:493–503. https://doi.org/10.1007/s13402-013-0154-4

    Article  CAS  Google Scholar 

  16. Berclaz G, Altermatt HJ, Rohrbach V, Siragusa A, Dreher E, Smith PD (2001) EGFR dependent expression of STAT3 (but not STAT1) in breast cancer. Int J Oncol 19:1155–1160. https://doi.org/10.3892/ijo.19.6.1155

    Article  CAS  PubMed  Google Scholar 

  17. Bartoli M, Gu X, Tsai NT, Venema RC, Brooks SE, Marrero MB, Caldwell RB (2000) Vascular endothelial growth factor activates STAT proteins in aortic endothelial cells. J Biol Chem 275:33189–33192. https://doi.org/10.1074/jbc.C000318200

    Article  CAS  PubMed  Google Scholar 

  18. Yu CL, Meyer DJ, Campbell GS, Larner AC, Carter-Su C, Schwartz J, Jove R (1995) Enhanced DNA-binding activity of a Stat3-related protein in cells transformed by the Src oncoprotein. Science 269:81–83. https://doi.org/10.1126/science.7541555

    Article  CAS  PubMed  Google Scholar 

  19. Jain N, Zhang T, Kee WH, Li W, Cao X (1999) Protein kinase C delta associates with and phosphorylates Stat3 in an interleukin-6-dependent manner. J Biol Chem 274:24392–24400. https://doi.org/10.1074/jbc.274.34.24392

    Article  CAS  PubMed  Google Scholar 

  20. Hemmann U, Gerhartz C, Heesel B, Sasse J, Kurapkat G, Grotzinger J, Wollmer A, Zhong Z, Darnell JE Jr, Graeve L, Heinrich PC, Horn F (1996) Differential activation of acute phase response factor/Stat3 and Stat1 via the cytoplasmic domain of the interleukin 6 signal transducer gp130. II. Src homology SH2 domains define the specificity of stat factor activation. J Biol Chem 271:12999–13007. https://doi.org/10.1074/jbc.271.22.12999

    Article  CAS  PubMed  Google Scholar 

  21. Furtek SL, Backos DS, Matheson CJ, Reigan P (2016) Strategies and approaches of targeting STAT3 for cancer treatment. ACS Chem Biol 11:308–318. https://doi.org/10.1021/acschembio.5b00945

    Article  CAS  PubMed  Google Scholar 

  22. Qin JJ, Yan L, Zhang J, Zhang WD (2019) STAT3 as a potential therapeutic target in triple negative breast cancer: a systematic review. J Exp Clin Cancer Res 38:195. https://doi.org/10.1186/s13046-019-1206-z

    Article  PubMed  PubMed Central  Google Scholar 

  23. Miklossy G, Hilliard TS, Turkson J (2013) Therapeutic modulators of STAT signalling for human diseases. Nat Rev Drug Discov 12:611–629. https://doi.org/10.1038/nrd4088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yu W, Li C, Zhang W, Xia Y, Li S, Lin JY, Yu K, Liu M, Yang L, Luo J, Chen Y, Sun H, Kong L (2017) Discovery of an orally selective inhibitor of signal transducer and activator of transcription 3 using advanced multiple ligand simultaneous docking. J Med Chem 60:2718–2731. https://doi.org/10.1021/acs.jmedchem.6b01489

    Article  CAS  PubMed  Google Scholar 

  25. Masjedi A, Hashemi V, Hojjat-Farsangi M, Ghalamfarsa G, Azizi G, Yousefi M, Jadidi-Niaragh F (2018) The significant role of interleukin-6 and its signaling pathway in the immunopathogenesis and treatment of breast cancer. Biomed Pharmacother 108:1415–1424. https://doi.org/10.1016/j.biopha.2018.09.177

    Article  CAS  PubMed  Google Scholar 

  26. Yao H, He G, Yan S, Chen C, Song L, Rosol TJ, Deng X (2017) Triple-negative breast cancer: is there a treatment on the horizon? Oncotarget 8:1913–1924. https://doi.org/10.18632/oncotarget.12284

    Article  PubMed  Google Scholar 

  27. Avalle L, Pensa S, Regis G, Novelli F, Poli V (2012) STAT1 and STAT3 in tumorigenesis: a matter of balance. JAKSTAT 1:65–72. https://doi.org/10.4161/jkst.20045

    Article  PubMed  PubMed Central  Google Scholar 

  28. Dietze EC, Sistrunk C, Miranda-Carboni G, O'Regan R, Seewaldt VL (2015) Triple-negative breast cancer in African-American women: disparities versus biology. Nat Rev Cancer 15:248–254. https://doi.org/10.1038/nrc3896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bauer KR, Brown M, Cress RD, Parise CA, Caggiano V (2007) Descriptive analysis of estrogen receptor (ER)-negative, progesterone receptor (PR)-negative, and HER2-negative invasive breast cancer, the so-called triple-negative phenotype: a population-based study from the California cancer Registry. Cancer 109:1721–1728. https://doi.org/10.1002/cncr.22618

    Article  PubMed  Google Scholar 

  30. Deng J, Grande F, Neamati N (2007) Small molecule inhibitors of Stat3 signaling pathway. Curr Cancer Drug Targets 7:91–107

    Article  CAS  PubMed  Google Scholar 

  31. Darnell JE Jr (1997) STATs and gene regulation. Science 277:1630–1635. https://doi.org/10.1126/science.277.5332.1630

    Article  CAS  PubMed  Google Scholar 

  32. Lin L, Deangelis S, Foust E, Fuchs J, Li C, Li P-K, Schwartz EB, Lesinski GB, Benson D, Lü J, Hoyt D, Lin J (2010) A novel small molecule inhibits STAT3 phosphorylation and DNA binding activity and exhibits potent growth suppressive activity in human cancer cells. Mol Cancer 9:217. https://doi.org/10.1186/1476-4598-9-217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ren Z, Mao X, Mertens C, Krishnaraj R, Qin J, Mandal PK, Romanowski MJ, McMurray JS, Chen X (2008) Crystal structure of unphosphorylated STAT3 core fragment. Biochem Biophys Res Commun 374:1–5. https://doi.org/10.1016/j.bbrc.2008.04.049

    Article  CAS  PubMed  Google Scholar 

  34. Haan S, Hemmann U, Hassiepen U, Schaper F, Schneider-Mergener J, Wollmer A, Heinrich PC, Grotzinger J (1999) Characterization and binding specificity of the monomeric STAT3-SH2 domain. J Biol Chem 274:1342–1348. https://doi.org/10.1074/jbc.274.3.1342

    Article  CAS  PubMed  Google Scholar 

  35. Song H, Wang R, Wang S, Lin J (2005) A low-molecular-weight compound discovered through virtual database screening inhibits Stat3 function in breast cancer cells. Proc Natl Acad Sci USA 102:4700–4705. https://doi.org/10.1073/pnas.0409894102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lin L, Hutzen B, Li PK, Ball S, Zuo M, DeAngelis S, Foust E, Sobo M, Friedman L, Bhasin D, Cen L, Li C, Lin J (2010) A novel small molecule, LLL12, inhibits STAT3 phosphorylation and activities and exhibits potent growth-suppressive activity in human cancer cells. Neoplasia 12:39–50. https://doi.org/10.1593/neo.91196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Siddiquee K, Zhang S, Guida WC, Blaskovich MA, Greedy B, Lawrence HR, Yip ML, Jove R, McLaughlin MM, Lawrence NJ, Sebti SM, Turkson J (2007) Selective chemical probe inhibitor of Stat3, identified through structure-based virtual screening, induces antitumor activity. Proc Natl Acad Sci USA 104:7391–7396. https://doi.org/10.1073/pnas.0609757104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chen Y, Ji M, Zhang S, Xue N, Xu H, Lin S, Chen X (2018) Bt354 as a new STAT3 signaling pathway inhibitor against triple negative breast cancer. J Drug Target 26:920–930. https://doi.org/10.1080/1061186x.2018.1452244

    Article  CAS  PubMed  Google Scholar 

  39. Deng XS, Wang S, Deng A, Liu B, Edgerton SM, Lind SE, Wahdan-Alaswad R, Thor AD (2012) Metformin targets Stat3 to inhibit cell growth and induce apoptosis in triple-negative breast cancers. Cell Cycle 11:367–376. https://doi.org/10.4161/cc.11.2.18813

    Article  CAS  PubMed  Google Scholar 

  40. McDaniel JM, Varley KE, Gertz J, Savic DS, Roberts BS, Bailey SK, Shevde LA, Ramaker RC, Lasseigne BN, Kirby MK, Newberry KM, Partridge EC, Jones AL, Boone B, Levy SE, Oliver PG, Sexton KC, Grizzle WE, Forero A, Buchsbaum DJ, Cooper SJ, Myers RM (2017) Genomic regulation of invasion by STAT3 in triple negative breast cancer. Oncotarget 8:8226–8238. https://doi.org/10.18632/oncotarget.14153

    Article  PubMed  Google Scholar 

  41. Thakur R, Trivedi R, Rastogi N, Singh M, Mishra DP (2015) Inhibition of STAT3, FAK and Src mediated signaling reduces cancer stem cell load, tumorigenic potential and metastasis in breast cancer. Sci Rep 5:10194. https://doi.org/10.1038/srep10194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Liang S, Chen Z, Jiang G, Zhou Y, Liu Q, Su Q, Wei W, Du J, Wang H (2017) Activation of GPER suppresses migration and angiogenesis of triple negative breast cancer via inhibition of NF-kappaB/IL-6 signals. Cancer Lett 386:12–23. https://doi.org/10.1016/j.canlet.2016.11.003

    Article  CAS  PubMed  Google Scholar 

  43. Lee E, Fertig EJ, Jin K, Sukumar S, Pandey NB, Popel AS (2014) Breast cancer cells condition lymphatic endothelial cells within pre-metastatic niches to promote metastasis. Nat Commun 5:4715. https://doi.org/10.1038/ncomms5715

    Article  CAS  PubMed  Google Scholar 

  44. Al Zaid Siddiquee K, Turkson J (2008) STAT3 as a target for inducing apoptosis in solid and hematological tumors. Cell Res 18:254–267. https://doi.org/10.1038/cr.2008.18

    Article  CAS  PubMed  Google Scholar 

  45. Levy DE, Lee CK (2002) What does Stat3 do? J Clin Invest 109:1143–1148. https://doi.org/10.1172/jci15650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Niu G, Heller R, Catlett-Falcone R, Coppola D, Jaroszeski M, Dalton W, Jove R, Yu H (1999) Gene therapy with dominant-negative Stat3 suppresses growth of the murine melanoma B16 tumor in vivo. Cancer Res 59:5059–5063

    CAS  PubMed  Google Scholar 

  47. Schlessinger K, Levy DE (2005) Malignant transformation but not normal cell growth depends on signal transducer and activator of transcription 3. Cancer Res 65:5828–5834. https://doi.org/10.1158/0008-5472.can-05-0317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kortylewski M, Yu H (2007) Stat3 as a potential target for cancer immunotherapy. J Immunother 30:131–139. https://doi.org/10.1097/01.cji.0000211327.76266.65

    Article  CAS  PubMed  Google Scholar 

  49. Sasidharan Nair V, Toor SM, Ali BR, Elkord E (2018) Dual inhibition of STAT1 and STAT3 activation downregulates expression of PD-L1 in human breast cancer cells. Expert Opin Ther Targets 22:547–557. https://doi.org/10.1080/14728222.2018.1471137

    Article  PubMed  Google Scholar 

  50. Kitamura H, Ohno Y, Toyoshima Y, Ohtake J, Homma S, Kawamura H, Takahashi N, Taketomi A (2017) Interleukin-6/STAT3 signaling as a promising target to improve the efficacy of cancer immunotherapy. Cancer Sci 108:1947–1952. https://doi.org/10.1111/cas.13332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tan FH, Putoczki TL, Stylli SS, Luwor RB (2014) The role of STAT3 signaling in mediating tumor resistance to cancer therapy. Curr Drug Targets 15:1341–1353

    Article  CAS  PubMed  Google Scholar 

  52. Spitzner M, Ebner R, Wolff HA, Ghadimi BM, Wienands J, Grade M (2014) STAT3: a novel molecular mediator of resistance to chemoradiotherapy. Cancers (Basel) 6:1986–2011. https://doi.org/10.3390/cancers6041986

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge Dr. Thomas J. Hornyak at University of Maryland School of Medicine for the use of Leica microscope. This research was supported by the University of Maryland School of Medicine and Comprehensive Cancer Center start up fund.

Author information

Authors and Affiliations

Authors

Contributions

Perform experiments, L. P., X. C., S. F. and W. Y.; Funding acquisition, J. L.; Project administration, J. L.; Resources, C. L.; Supervision, C. L. and J. L.; Writing – original draft, L. P.; Writing – review & editing, T. W., and H. L.. The manuscript was reviewed by all authors, and all authors have approved the final version of the article.

Corresponding author

Correspondence to Jiayuh Lin.

Ethics declarations

Ethical approval

All procedures performed in studies involving animals were in accordance with the ethical standards of the IACUC of University of Maryland, Baltimore.

Conflict of interest

The authors declare that they have no conflicts of interest.

Informed consent

Since there are no human subjects in this study, formal consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, L., Chen, X., Fu, S. et al. LLY17, a novel small molecule STAT3 inhibitor induces apoptosis and suppresses cell migration and tumor growth in triple-negative breast cancer. Breast Cancer Res Treat 181, 31–41 (2020). https://doi.org/10.1007/s10549-020-05613-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-020-05613-6

Keywords

Navigation