Skip to main content
Log in

Effect of tellurite-mediated oxidative stress on the Escherichia coli glycolytic pathway

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

To unveil the metabolic impact of tellurite in the bacterial cell, the effect of this toxicant on the expression and activity of key enzymes of the Escherichia coli glycolytic pathway was analyzed. E. coli exposure to tellurite results in: (i) increased glucose consumption, which was paralleled by an increased expression of the glucose transporter-encoding gene ptsG, (ii) augmented phosphoglucoisomerase activity and pgi transcription, (iii) decreased activity of the enzymatic regulators phosphofructokinase and pyruvate kinase. In spite of these observations, increased intracellular pyruvate, phosphoenol pyruvate and phosphorylated sugars was observed. E. coli lacking key glycolytic enzymes was considerably more sensitive to tellurite than the parental, isogenic, wild type strain. Taken together, these results suggest that increasing the availability of key metabolites (pyruvate, phosphoenol pyruvate, NADPH), required to respond to tellurite mediated-stress, E. coli shifts the carbon flux towards the pentose phosphate pathway thus facilitating the functioning of the Entner–Doudoroff pathway and/or the glycolytic productive phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Almeida J, Novelli E, Dal-Pai Silva M, Alves R (2001) Environmental cadmium exposure and metabolic responses of the Nile tilapia Oreochromis niloticus. Environ Pollut 114:169–175

    Article  PubMed  CAS  Google Scholar 

  • Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y et al (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2(2006):0008

    PubMed  Google Scholar 

  • Bouma C, Meadow N, Stover E, Roseman S (1987) II-BGlc, a glucose receptor of the bacterial phosphotransferase system: molecular cloning of ptsG and purification of the receptor from an overproducing strain of Escherichia coli. Proc Natl Acad Sci USA 84:930–934

    Article  PubMed  CAS  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye-binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Calderón I, Arenas F, Pérez J, Fuentes D, Araya M et al (2006) Catalases are NAD(P)H-dependent tellurite reductases. PLoS One 1:e70

    Article  PubMed  Google Scholar 

  • Calderón I, Elías A, Fuentes E, Pradenas G, Castro M et al (2009) Tellurite-mediated disabling of [4Fe-4S] clusters of Escherichia coli dehydratases. Microbiology 155:1840–1846

    Article  PubMed  Google Scholar 

  • Chasteen TG, Fuentes DE, Tantaleán JC, Vásquez CC (2009) Tellurite: history, oxidative stress and molecular mechanisms of resistance. FEMS Microbiol Rev 33:820–832

    Article  PubMed  CAS  Google Scholar 

  • Contreras Ndel P, Vásquez CC (2010) Tellurite-induced carbonylation of the Escherichia coli pyruvate dehydrogenase multienzyme complex. Arch Microbiol 192:969–973

    Article  PubMed  Google Scholar 

  • Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97:6640–6645

    Article  PubMed  CAS  Google Scholar 

  • Dubois K, Gilles J, Hamilton P, Rebers P, Smith F (1956) The phenol-sulfuric acid reaction for carbohydrates. Anal Chem 28:3350

    Article  Google Scholar 

  • Fraenkel D, Levisohn S (1967) Glucose and gluconate metabolism in an Escherichia coli mutant lacking phosphoglucose isomerase. J Bacteriol 93:1571–1578

    PubMed  CAS  Google Scholar 

  • Garberg P, Engman L, Tolmachev V, Lundqvist H, Gerdes R et al (1999) Binding of tellurium to hepatocellular selenoproteins during incubation with inorganic tellurite: consequences for the activity of selenium-dependent glutathione peroxidase. Int J Biochem Cell Biol 31:291–301

    Article  PubMed  CAS  Google Scholar 

  • Gebhard S, Ronimus R, Morgan W (2001) Inhibition of phosphofructokinase by copper (II). FEMS Microbiol Lett 197:105–109

    Article  PubMed  CAS  Google Scholar 

  • Hansen T, Schönheit P (2000) Purification and properties of the first-identified, archaeal, ATP-dependent 6-phosphofructokinase, an extremely thermophilic non-allosteric enzyme, from the hyperthermophile Desulfurococcus amylolyticus. Arch Microbiol 173:103–109

    Article  PubMed  CAS  Google Scholar 

  • Imlay J (2003) Pathways of oxidative damage. Annu Rev Microbiol 57:395–418

    Article  PubMed  CAS  Google Scholar 

  • Jagannathan V, Singh K, Damodaran M (1956) Carbohydrate metabolism in citric acid fermentation. 4. Purification and properties of aldolase from Aspergillus niger. Biochem J 63:94–105

    PubMed  CAS  Google Scholar 

  • Kornberg H, Reeves R (1972) Inducible phosphoenolpyruvate-dependent hexose phosphotransferase activities in Escherichia coli. Biochem J 128:1339–1344

    PubMed  CAS  Google Scholar 

  • Kotlarz D, Garreau H, Buc H (1975) Regulation of the amount and of the activity of phosphofructokinases and pyruvate kinases in Escherichia coli. Biochim Biophys Acta 381:257–268

    Article  PubMed  CAS  Google Scholar 

  • Kumar R, Shimizu K (2011) Transcriptional regulation of main metabolic pathways of cyoA, cydB, fnr, and fur gene knockout Escherichia coli in C-limited and N-limited aerobic continuous cultures. Microb Cell Fact 10:3

    Article  PubMed  CAS  Google Scholar 

  • Malthankar G, White B, Bhushan A, Daniels C, Rodnick K et al (2004) Differential lowering by manganese treatment of activities of glycolytic and tricarboxylic acid (TCA) cycle enzymes investigated in neuroblastoma and astrocyoma cells is associated with manganese—induced cell death. Neurochem Res 29:709–717

    Article  PubMed  CAS  Google Scholar 

  • Mostertz J, Scharf C, Hecker M, Homuth G (2004) Transcriptome and proteome analysis of Bacillus subtilis gene expression in response to superoxide and peroxide stress. Microbiology 150:497–512

    Article  PubMed  CAS  Google Scholar 

  • Nelson DL, Cox M (2008) Principles of biochemistry, 5th edn. In: Chapter 14. W. H. Freeman and Company, New York

  • Nies D (1999) Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51:730–750

    Article  PubMed  CAS  Google Scholar 

  • Pérez J, Calderón I, Arenas F, Fuentes D, Pradenas A et al (2007) Bacterial toxicity of potassium tellurite: unveiling an ancient enigma. PLoS One 2:e211

    Article  PubMed  Google Scholar 

  • Pérez J, Arenas F, Pradenas G, Sandoval J, Vásquez CC (2008) Escherichia coli YqhD exhibits aldehyde reductase activity and protects from the harmful effect of lipid peroxidation-derived aldehydes. J Biol Chem 283:7346–7353

    Article  PubMed  Google Scholar 

  • Postma W, Lengeler J, Jacobson G (1993) Phosphoenolpyruvate: carbohydrate phosphotransferase systems of bacteria. Microbiol Rev 57:543–594

    PubMed  CAS  Google Scholar 

  • Privalle C, Kong S, Fridovich I (1993) Induction of manganese-containing superoxide dismutase in anaerobic Escherichia coli by diamide and 1,10-phenanthroline: sites of transcriptional regulation. Proc Natl Acad Sci USA 90:2310–2314

    Article  PubMed  CAS  Google Scholar 

  • Reichl F, Szinicz I, Kreppel H, Forth W (1988) Effect of arsenic on carbohydrate metabolism after single or repeated injection in guinea pigs. Arch Toxicol 62:473–475

    Article  PubMed  CAS  Google Scholar 

  • Rui B, Shen T, Zhou H, Liu J, Chen J et al (2010) A systematic investigation of Escherichia coli central carbon metabolism in response to superoxide stress. BMC Syst Biol 4:122

    Article  PubMed  Google Scholar 

  • Rungrassamee W, Liu X, Pomposiello P (2008) Activation of glucose transport under oxidative stress in Escherichia coli. Arch Microbiol 190:41–49

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsh EF, Maniatis T (1989) Molecular Cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Sandoval JM, Arenas FA, Vásquez CC (2011) Glucose-6-phosphate dehydrogenase protects Escherichia coli from tellurite-mediated oxidative stress. PLoS One 6:e25573

    Article  PubMed  CAS  Google Scholar 

  • Stadtman E (1992) Protein oxidation and aging. Science 257:1220–1224

    Article  PubMed  CAS  Google Scholar 

  • Storz G, Imlay J (1999) Oxidative stress. Curr Opinion Microbiol 2:188–194

    Article  CAS  Google Scholar 

  • Strydom C, Robinson C, Pretorius E, Whitcutt J, Marx J, Bornman M (2006) The effect of selected metals on the central metabolic pathways in biology: a review. Water SA 32:543–554

    CAS  Google Scholar 

  • Taylor DE (1999) Bacterial tellurite resistance. Trends Microbiol 7:111–115

    Article  PubMed  CAS  Google Scholar 

  • Tremaroli V, Fedi S, Zannoni D (2007) Evidence for a tellurite-dependent generation of reactive oxygen species and absence of a tellurite-mediated adaptive response to oxidative stress in cells of Pseudomonas pseudoalcaligenes KF707. Arch Microbiol 187:127–135

    Article  PubMed  CAS  Google Scholar 

  • Turner R, Weiner J, Taylor DE (1999) Tellurite-mediated thiol oxidation in Escherichia coli. Microbiology 145:2549–2557

    PubMed  CAS  Google Scholar 

  • Turner R, Aharonowitz Y, Weiner J, Taylor D (2001) Glutathione is a target in tellurite toxicity and is protected by tellurite resistance determinants in Escherichia coli. Can J Microbiol 47:33–40

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by FONDECYT (Fondo Nacional de Investigación Científica y Tecnológica) Grants # 1090097 (C.C.V.) and # 3100049 (J.M.P.). Dicyt (Dirección de Investigación)-USACH # 021043PD and IFS (International Foundation for Science) # F/4733 grants to J.M.P. are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio C. Vásquez.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10534_2012_9518_MOESM1_ESM.tif

Supplementary material 1 (TIFF 29 kb). Fig. S1 Pyruvate, phosphoenolpyruvate and total phosphorylated sugars levels in tellurite-exposed E. coli BW25113. Metabolites were determined by HPLC as described in Methods. Bars represent the average of 3 independent trials

10534_2012_9518_MOESM2_ESM.tif

Supplementary material 2 (TIFF 14 kb). Fig. S2 PGI activity in E. coli exposed to tellurite. Enzyme activity was assayed in crude extracts of the indicated strains as described in Methods. Bars represent the average of 4 independent trials

10534_2012_9518_MOESM3_ESM.tif

Supplementary material 3 (TIFF 99 kb). Fig. S3 Model that illustrates our current view of tellurite effect on bacterial glycolysis. PGI, phosphoglucose isomerase; PFK, phosphofructokinase; TIM, triose phosphate isomerase; GAPDH, glyceraldehide-3-phosphate dehydrogenase; PK, pyruvate kinase; G6PDH, glucose-6-phosphate dehydrogenase; 6PGD, 6-phosphogluconate dehydrogenase; ACN, aconitase; FUM, fumarase; PDH, pyruvate dehydrogenase; Nir, nitrate reductase; CAT, catalase; G6P, glucose-6-phosphate; F6P, fructose-6-phosphate; FBP, fructose-1,6-bisphosphate; G3P, glyceraldehide-3-phosphate; PEP, phosphoenolpyruvate; PYR, pyruvate; DHAP, dihydroxyacetone phosphate. Once tellurite enters the cytoplasm (1), it is enzymatically reduced by PDH, Nir or CAT, with the concomitant generation of superoxide. This radical damages enzymes like ACN and FUM thus affecting the functioning of the Krebs cycle. In addition, superoxide activates soxS regulon which in turn induces zwf, ptsG and pgi transcription. Increased PtsG (a subunit of Enzyme IIGlc) levels result in increased glucose transport into the cytoplasm (2). Although PGI activity is enhanced in these conditions (3), PFK activity is decreased (4). Given that the activity of the PPP enzymes G6PDH and 6PGD is enhanced upon toxicant exposure, this observation suggests that a metabolic flux change towards PPP occur (5). The final F6P (G3P is also generated) product of PPP can be isomerized to G6P entering again the PPP (6). PPP intermediates can be used to generate PYR and G3P by the Entner-Doudoroff pathway (E-D) (7). Synthesized G3P could enter glycolysis to form PEP (8), which is required for glucose entrance (2). Since PK and PFK activities are decreased (9), high pyruvate levels could result as consequence of glucose transporters (2) and/or E-D (7) activity

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valdivia-González, M., Pérez-Donoso, J.M. & Vásquez, C.C. Effect of tellurite-mediated oxidative stress on the Escherichia coli glycolytic pathway. Biometals 25, 451–458 (2012). https://doi.org/10.1007/s10534-012-9518-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-012-9518-x

Keywords

Navigation